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We deal with the problem of nanoscale superconductivity. Na noscale superconductivity
remains to be one of the most interesting research areas in co ndensed mater. Recent tech-
nology and experiments have fabricated high-quality super conducting MgB , nanopar-
ticles. We consider the two-band superconductivity in ultr  asmall grains, by extending
the Richardson exact solution to two-band systems, and deve lop the theory of interac-

tions between nano-scale ferromagnetic particles and supe rconductors. The properties of
nano-sized two-gap superconductors and the Kondo e ect in s uperconducting ultrasmall

grains are investigated as well. The theory of the Josephson e ect is presented, and his
application to quantum computing are analyzed.
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1. Introduction

Recent advances in nanoscience have demonstrated that fundamtally new phys-
ical phenomena are found, when systems are reduced in size to dingons which
become comparable to the fundamental microscopic lengths of thievestigated ma-
terial. Superconductivity is a macroscopic quantum phenomena, at it is therefore
especially interesting to see how this quantum state is in uenced whe the sam-
ples are reduced to nanometer sizes. Recent developments in naechnologies and
measurement techniques nowadays allow the experimental investidion of the mag-
netic and thermodynamic superconducting properties of mesosgic samples in this
regime.

In this review, we develop some theoretical models to describe suaanoscale
superconducting systems and explore possible new experimentahpnomena which
we can predict based upon these theoretical models. In bulk sampe the stan-
dard Bardeen{Cooper{Schrie er (BCS) theory gives a good desdption of the phe-
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Fig. 1. The smallest superconductor in the world.

nomenon of superconductivity! However, it was noticed by Anderson in 1959 that,
as the size of a superconductor becomes smaller, and the quantuemergy level

spacing of the electrons in the sample approaches the supercontting gap, then

the BCS theory will fail. 2 The exact solution to the reduced BCS Hamiltonian for

nite-size systems was developed by Richardson in the context ofuclear physics a
long time ago? This shows that, while the grand canonical BCS wavefunction gives
a very accurate solution of the BCS Hamiltonian in the limit where the number of

electrons is very largeN 1, for small values ofN, one has to use exact analytical
methods to obtain reliable results.

The recent experimental advances in fabricating and measuring qeerconductiv-
ity in ultrasmall mesoscopic and nanoscale grains has renewed a thetical interest
in the Richardson solution*” Referencel0 shows the measurement for the smallest
size of a superconductor in the world which is 5 A, Fig.1.

Such systems are interesting for nanoelectronics and quantum agputing.

In this review, we propose to develop theoretical models for nanasle super-
conducting systems and to apply these models to a variety of systas of current
experimental interest. The Richardson solution depends on the eb#ron energy
level spacings near to the Fermi level, and so these di erent geontgc shapes will
lead to dierent size dependences of the thermodynamic and eleatmic proper-
ties. Property small superconducting granules depends on the piy of the number
of electronsN. By participating in Cooper pairing phenomenon has been called
\the phenomenon of parity”. Similar phenomena have long been know in nuclear
physics. In 1992, the parity e ect experimentally observed in a sméd granules of
aluminum.

Experiments have recently demonstrated superconductivity in ore-dimensional
nanowires of lead and carbon?® Our theoretical predictions will include the even{
odd parity e ects in tunneling spectra, which have already been obsrved on the
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Fig. 2. lllustration of superconductor grains.

Fig. 3. Size e ect in superconductor grains.

Fig. 4. Carbon nanotube revealing superconductivity.

nanometer scale in Al grains, (Fig. 2),* but which could also be observed in
nanotube superconductors. In Figs.2 and 3, we can see the ensemble of small
metallic grains which can be in the normal or superconducting stateFor such sys-
tems, the important parameters are the granular size ), electron coherence length
() and the penetration depth ( ).1° In grains, there appears the quantum size
e ect (discretization of the electron energy spectrum). In Fig. 3, we show the size
e ect in grains. We note that the level spacing depends on many paameters such
as the electron coherence length and the penetration depth.

Carbon nanotubes were rst observed in 1991 by lijima in Japan, Fig 4.

Superconductivity was discovered in the simple binary compound MgB, in
Ref. 18, with T, = 39 K which is the highest temperature among the two-component
systems. Magnesium diboride is reported to be an anisotropic supeonductor with
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conventional BCS electron{phonon coupling?® In the recent years, great e orts have

been devoted to the fabrication of MgB, nanostructures that could play a crucial

role in the eld of applied superconductivity. 2* Recent technology and experiments
have fabricated high-quality superconducting MgB, nanoparticles.

In this review, we investigate properties of nanosize two-gap supeonductivity
by using a two-sublevel model in the framework of the mean- eld aproximation.
A model corresponding to a nanosize two-gap superconductivity ipresented, and
the partition function of the nanosize system is analytically derived by using the
path integral approach. A de nition of the critical level spacing of the two-gap
superconductivity is also presented, and we discuss the condertgan energy and
the parity gap of two-gap superconductivity in relation to the size dependence
of those properties with two bulk gaps and the e ective pair scatteing process
between two sublevels. We present the theory of interactions b&teen two nanoscale
ferromagnetic particles embedded into a superconductor and spinrientation phase
transitions in such a system. We also consider the ideas of quantunoeputing and
quantum information in mesoscopic circuits. The theory of the Josehson e ect is
presented, and its applications in quantum computing are analyzedThe results of
this chapter were obtained by the authors and published in workst0-12{14

2. Nanosize Superconductivity

Recent experiment$®>1® by Black et al. have also generated a high interest in the
size dependence of the superconductivity. Properties of ultrasall superconducting
grains have been theoretically investigated by many groupd’{23 In such ultrasmall
grains, the old but fundamental theoretical question was noticedby Anderson.?
The standard BCS theory gives a good description of the phenomem of supercon-
ductivity in large samples. However, as the size of a superconduatd®ecomes small,
the BCS theory fails. In ultrasmall Al grains, the bulk gap has been dscussed in
relation to physical properties in ultrasmall grains such as the pariy gap,?® con-
densation energy?® electron correlation,!8 etc. with the size dependence of the level
spacing® of samples.

Superconductivity was discovered in the simple binary compound MgB, in
Ref. 18, with T, = 39 K which is the highest temperature among the two-component
systems. Magnesium diboride is reported to be an anisotropic supeonductor with
conventional BCS electron{phonon coupling!® The band structure of MgB, cal-
culated in several works since the discovery superconductivity isisiilar to that
of graphite and is formed by by the and zones. The magnesium diboride has
two superconducting gaps, 4 and 7.5 meV, due to the and electron bands. The
two-gap structure was established in a number of experiment$®25 and two-gap
superconductivity has also discussed by many group®{32

In the recent years, great e orts have been devoted to the fakication of MgB »
nanostructures that could play a crucial role in the eld of applied superconductiv-
ity. 2* The ideal candidate is one-dimensional (1D) nanostructures incluihg nan-
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Fig. 5. TEM micrograph of 20{100 nm nanoparticles of MgB  ».

otubes, nanowires and nanoparticles. As for MgB, nanoparticles of approximately
40{100 nm in size are available (Fig.5). For ultrasmall superconducting grains,
the experiments®®3* by Black et al. have also generated much interest in the size
dependence of superconductivity. Properties of ultrasmall supeonducting grains
have been theoretically investigated by many groups®3° Such ultrasmall grains
were considered by Andersori® The standard BCS theory gives a good description
of the phenomenon of superconductivity in large samples. Howeveas the size of a
superconductor becomes small, the BCS theory fails. For ultrasm&Al grains, 3334
the bulk gap has been discussed in relation to physical properties dafiltrasmall
grains such as the parity gap?® condensation energy?® electron correlation ¢ etc.,
as well as the size-dependence of the level spactgof samples. In this letter, we
investigate the properties of two-gap superconductivity in a nanesized system by
using a two-sublevel model in the case of strong interaction.

We discuss the condensation energy and the parity gap of two-gapupercon-
ductivity in relation to the size-dependence of those properties in he case of two
bulk gaps and the e ective pair scattering. In this section, we invegigate the prop-
erties of nanosize two-gap superconductivity by using a two-sublel model in the
framework of the mean- eld approximation. A model corresponding to a nanosize
two-gap superconductivity is presented, and the partition function of the nanosize
system is analytically derived by using the path integral approach. Ade nition of
the critical level spacing of the two-gap superconductivity is also pesented, and we
discuss the condensation energy and the parity gap of two-gap gerconductivity
in relation to the size dependence of those properties with two bulk gps and the
e ective pair scattering process between two sublevels. In nandse grains of a su-
perconductor, the quantum level spacing approaches the supeonducting gap. In
the case of a two-gap superconductor, we can consider a modeitlvtwo sublevels
corresponding to two independent bands. In this section, we prest a model for
nanosize two-gap superconductivity and an expression for the pétion function of
the system.

1230013-6



September 6, 2012 8:37 WSPC/Guidelines-IJMPB S0217979212301

Nanoscale Superconductivity

In this section, we investigate the properties of nanosize two-gaguperconduc-
tivity by using a two-sublevel model in the framework of the mean- eld approxima-
tion. A model corresponding to a nanosize two-gap superconduistity is presented,
and the partition function of the nanosize system is analytically derived by using
the path integral approach. A de nition of the critical level spacin g of the two-gap
superconductivity is also presented, and we discuss the condertgan energy and the
parity gap of two-gap superconductivity in relation to the size dependence of those
properties with two bulk gaps and the e ective pair scattering process between
two sublevels. In nanosize grains of a superconductor, the quanin level spacing
approaches the superconducting gap. In the case of a two-gajpgerconductor, we
can consider a model with two sublevels corresponding to two indepelent bands.
In this section, we present a model for nanosize two-gap supernductivity and an
expression for the partition function of the system.

2.1. Hamiltonian for nanosize grains

We consider a pairing Hamiltonian with two sublevels corresponding to o bands
1 and 2 written as:

H = Ho+ Hin ; 1)

where
X X

Ho=  ['3 ]a]-y g + ['a o b ; (2)

is k;

X X
Hint = & a]y..a}’#ajo#ajo-- 02 by b, bcosbior

jij 21 k;k 923

X X
+ 012 al.a,bebe + g e PP T 3)
j21k 23 j2k 23
Here,a’ (a )and b/ (b; ) are the creation (annihilation) operator in sublevels 1
and 2 with spin  and the energies'y; and "y, respectively, the operators for each
sublevel satisfy the anticommutation relations and the operatorsbetween sublevels
are independent, is the chemical potential, the second term in Eq. Q) is the
interaction Hamiltonian, g; and g, are the e ective interaction constant for sublevels
1 and 2, andg;, is an e ective interaction constant which corresponds to the pair
scattering process between two bands. The sums ¢fand k in Eq. (3) are over the
set| of Np; states corresponding to the half- lled band 1 with xed width 2! 1p
and the setJ of N,; states for band 2, respectively.

In this study, we assume that the Debye energies for two sublevelsre the same:
'1p = ! 2p = ! p. Within this assumption, N1, and N; are relatively estimated
by the density of state (DOS) for two bands asN;; =N,; = 1= 5, where ; and »
are DOS for two bands. The interaction constantsg; and g, can be written asd; ;
and d; », respectively.d; = 2! p=N3; and d; = 2! p =N,; means the mean energy
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level spacing, and ; and ; are the dimensionle%s parameters for two sublevels. We
take the intersublevel interaction constant gi> = = didy 12. In summary, we obtain
a relation of 1= 2 = N1| :NQJ = dzzd]_.

2.2. Path integral approach

It is convenient to introduce a path integral approach for the treatment of uc-
tuations of the order parameters. This approach gives an exactxpression for the
grand partition function of a superconductor.

z(;T)=Trep T @
where T is the temperature and N is the number operator in the grain. The idea
of the path integral approach is to replace the description of a sym under study
in terms of electronic operators by an equivalent description in terns of the super-
conducting order parameter.
By the path integral approach, we obtain an expression for the gand partition

function for the Hamiltonian ( 1):

z

Z(;T)= D ;D ,D ;D .e S[ 15 2] (5)

Here, the actionS[ 1; 2] is de ned as:

Sl & = Thed A Tned
[ 1 2= | rn Gy" ) rn Gy =
2 1=t 1 2 2
. q : 2, o .
. we % (%] 1( )"+ g 2()]
+o2( 2() 20) + 2() 20)]: (6)
1 and , are bulk gaps for sublevels 1 and 2, respectively,;; = "y and
2k = "ok , and the inverse Green's functions
d
Gyl 9= 4wt 0" a0 9 (7)
and
1/. — d z + .
Gul(: 9= g % 2() 2(1) C 9 (8)
where = X | Y and *¥Z? are the Pauli matrices. G, ' and G,' satisfy

antiperiodic boundary conditions.
In the case of a stronger interaction, 1 d; and > d,, we consider the
mean- eld approximation for the order parameters in the path integral approach.

1230013-8



September 6, 2012 8:37 WSPC/Guidelines-IJMPB S0217979212301

Nanoscale Superconductivity

Substituting the time-independent order parameters into the acion (6), we have:
X X
()= (y )+ (=« 2
j k
b g e 3tou( g 2t 1 o, ©)
010 g%z 1 1 2 12 1 2 1 21
where 5 =( §+ D) and x=( 5+ %' InEq. (9), the values of ; and
2 must be chosen in such a way which minimizes . From the minimization of
we obtain a coupled gap equation at zero temperature for the twaggap system:

9 P p 11

- Q5 O12 — !
1 12y K2 1
= : (10)
2 P 1 P 1 2
012

12y % kg

Fom the coupled gap equation, Eq. 10), we formally obtain an expression for the
bulk gap for two-gap superconductivity at zero temperature:

~1=1sinh ! 1 (11)
1
and
~,=1sinh ! 1 ; (12)
2
where
1 + ;
- = 2 [ 1 22] 12; (13)
1 12 12
1 1+ 12
— = ~ (14)
2 1 2 12
and
sinh i
[ 2]= 11 (15)
sinh —
2

For the two-band superconductivity, we can consider two casesoir the phase of
the gaps: sgn("1) = sgn( ~2), and sgn(T™1) = sgn(™2). For the same phase,

is used in Egs. (3) and (14), and we use for the opposite phase. Note that
~1 = T, in the limit of strong intersublevel coupling 12, that is, the opposite
phase. For 12 = 0, we nd the same results for two bulk gaps derived from the
conventional BCS theory for two independent sublevels.
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2.3. Condensation energy

In this section, we discuss properties such as condensation engrgritical level
spacing and parity gap of nanosize two-gap superconductivity by ging the partition
function derived in the previous section.

In nanosize superconductivity, the condensation energy can be edned as
Ego( ) = ESp(0) ESp() nd, where ES, is the ground state energy of
the N -electron system in the interaction band, b is the number of electrons on
single occupied levels and and n are the dimensionless coupling parameter and
the number of pair occupied level, respectively. In the case of a naisize two-band
system, the condensation energy can be written as:

Eﬁl;bl;NZ;bZ( 1 2 12): Eﬁlibl;Nz;bz(O;O;o) Eﬁl;bl;NZ;bZ( 15 2 12)
Ny 101 Nz 2dz; (16)

whereES | \,1,( 15 25 12) means the ground state energy ofl; + N»)-electron
system. From Eqs. @) and (9), the condensation energy of the two-sublevel system
can be expressed by the condensation energy of independent siadevel systems:

2
12

EN,bonab,( 10 20 12)= ES i, ( 1)+ EX,p,( 2) <. 5
2 2
1 + 2 + 2( '6 2+ 1 2) : (17)
dl 1 d2 2 d1d2 12

where EG ., (1) and ES_, ( 2) correspond to the condensation energy for the
single band case. In the same phases of; and ;, the condensation energy {7)

decreases, that is, there appears the instability by the coupling costant 1,. On

the other hand, in the opposite phases, the condensation energyecomes larger,
because ; 2+ 1 , < 0.We can expect that the condensation energy for two-
gap superconductivity leads to a higher stability, than that of two in dependent
systems, due to the intersublevel coupling 1> and the opposite phases.

2.4. Critical level spacing

To discuss the critical level spacing for a two-gap system, we stafrom the coupled
gap Eqg. (10). For the case of the critical level spacing of the two-gap systemwe

have:
X 1 X 1 X 1 X 1
1= —+ 2 —— (12 %) — —; (18)
Iz A i AT AT
where 7 = ;=d for subleveli = 1;2. For the odd or even cases, Eq.18) can be

approximately solved by using the digamma function: For the odd cas, the critical
level spacing becomes:

1
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and, for the even case,

1 d
di.=4!pe exp = ; Sczd—i S (20)
Here, we use
1 1 q 2 2
— = o 1+ 2 ax+ (1 2 ax)?+4 o (21)
with
X= 12 5 (22)
a=log o : (23)
d>
From these expressions, we nd some relations:
dfc =4dy; d3 =4dy (24)
and
e 1 1 _
diopc  ZOXP — = T2 (25)
1=2
In the case of] 1 2] 12, EQ. (25) can be approximately rewritten as:
+2
Oy % exp 212 2~ . (26)
1 2 12
On the other hand, in the limit of j 1 2] 12, We have:
e 1+ _
diooc > exp % 1=0 ! (27)
12 12

For the case of 1, =0, Eq. (25 can be rewritten asd,_,, exp[ ]=2exp[l=

1= ,] ™ 1=. Therefore, when the coupling constants ; and , take the same value,
we have a relation similar to that for a single level systemd,_,.  0:897;-,. These
results suggest the critical level spacing strongly depend upon;, and the di erence
between the e ective interaction constants for sublevels. The rétion in Eq. (24) is
the same relation in the conventional nanosize BCS theory.

2.5. Parity gap

In this subsection, we consider a parity gap in the case of two-gapuperconductivity
in ultrasmall grains. In the case of two sublevel spacings, the cheimal potential lies
halfway between the highest occupied and the lowest unoccupied lels of a smaller
level spacing in the half- lled case, as shown in Fig6(a).

We assume thatd; < d, and that the numbers of occupied levels corresponding
to each sublevel aren; and n,, respectively. Then, the total number of electron
becomesN = 2n; + 2n,. When we considerN = 2n; + 2n, + 1, the chemical
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@OE — O — O —
n1+1_ ny+1 n+ ]_I n2+l“ nﬁl; Nl
n, n H n, n n—4— n,
nl-li ak nl-li ak n;-1—H— -
A A0l A Ao i K-l
4 4
@— — @~ —
n1+2_ o ”1+2— L

u
ot 14 e N X v =1
nl+ + n, nl+ + n,

n- n-1—K—
1 11 + 0l i + n,-1
B

Fig. 6. Position of the chemical potential relative the elec tronic energy levels in a two-gap
superconducting grain. Solid and dotted lines mean two subl evels. (a) Half- lled system with
2n1 + 2ny electrons. (b) 2n1 + 1 + 2 np-electron system. (c) 2(n1 + 1) + 2 na-electron system.
(d) 2(ng +1)+2 ny + 1-electron system. (e) 2( n1 + 1) +2( ny + 1)-electron system.

potential lies on the level "15,+1; as shown in Fig. 6(b). Figure 6(c) shows the
position of the chemical potential in the case ofN =2n; +2n,+2. The parity gap
of nanosize two-gap superconductivity is written as:

1
5= Egniete2 noit E(E2Gn1+2 n2:0 + E(nye1e2 nj0) (28)
From Eq. (9) and for the ground state energyE,‘j;b = *+ «~N, we obtain:
di 1

From Figs. 6(c), 6(d) and 6(e), we can de ne another parity gap:

1
;%: E26(n1+1)+2 na+1:1 §(E2G(n1+1)+2 n.0t E2G(n1+1)+2( np+1):0) (30)
From the latter de nition of Eq. ( 30), we have:
& 32
4 1

The present results suggest two kinds of the dependence of theapty gap on the
level spacing. The parity gap does not depend upon the e ective irgraction 15.
The structure around the Fermi level plays an important role of the contribution to

5= 2 1 (31)
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the size dependence of the parity gap. We have investigated the pperties of nano-
size two-gap superconductivity by using a two-sublevel model in tle framework of
the mean- eld approximation. From the discussion of the condenston energy in
nanosize two-gap superconductivity, the phases of the gaps anery important to
stabilize the superconductivity. In the same phases, the two-gaguperconductivity
is instable by the coupling constant 1. On the other hand, in the opposite phases,
the superconductivity becomes stable. We can expect that, dued the condensa-
tion energy, the two-gap superconductivity becomes more stabl¢han that for two
independent systems due to the intersublevel coupling 12 and the opposite phases.

We have also discussed the critical level spacing for two-gap supsgnductivity
in ultrasmall grains. These results suggest that the critical level pacing strongly
depends upon 3, and the di erence between the e ective interaction constants fa
sublevels. Moreover, the relation between the critical level spacigpand the bulk gaps
is modi ed as compared with the result obtained for ultrasmall superconducting Al
grains.

For the parity gap in two-gap superconductivity, the present results suggest
two kinds of the dependence of the parity gap on the level spacingral that the
structure around the Fermi level plays an important role by contributing to the size
dependence on the parity gap. The parity gap does not depend upothe e ective
interaction 1».

In the case of a cluster system, we have to apply a more accuratepproach
beyond the mean- eld approximation presented in this study by investigating the
physical properties, and we also have to consider the contributiorof the surface
of samples to the level structure around the Fermi level. We will present these
problems in the next section. On the basis of the presented resultsve might expect
the possibility of a new multi-gap superconductivity arising in the nanosize region
with a higher critical transition temperature.

In summary, a model corresponding to a nanosize two-gap supesaductivity
has been presented, and an expression for the partition functiorof the nanosize
system has been analytically derived by using the path integral appoach. A de -
nition of the critical level spacing of the two-gap superconductivity has been also
presented, and we discuss the condensation energy and the parigap of the two-
gap superconductivity in relation to the size dependence of thoserpperties with
two bulk gaps, as well as the e ective pair scattering process beteen two sublevels.

3. Exact Solution for the Superconductivity in Ultrasmall G rain

Many groups have theoretically investigated the physical properies such as
critical level spacing, condensation energy, parity gap, etc. in ultasmall grains
with the conventional superconductivity. {23 The question concerning such nano-
size superconducting grains has been discussed by Andersbihe standard BCS
theory becomes false, when the level spacing approaches the suponducting gap.
To investigate the properties in such nanosize systems, it is necemy to take a
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more accurate treatment. Braun and von Delftt}2224 have reintroduced the ex-
act solution to the reduced BCS Hamiltonian developed by Richardsorf®(?7 |t is

noteworthy that the Richardson's solution is applicable at distributio ns of single-
electron energy levels. Gladilinet al.® have investigated the pairing characteristics
such as the condensation energy, spectroscopic gap, parity gaptc., by using the
Richardson's exact solution for the reduced BCS Hamiltonian.

The recent discovery of superconductivity of MgB2?® with T. = 39 K has also
been much attracted a great interest aimed at the elucidation of itsmechanism from
both experimental and theoretical viewpoints. Since this discovey, the possibility of
two-band superconductivity has also been discussed in relation tono gap functions
experimentally and theoretically.

In this section, we investigate the two-band superconductivity in utrasmall
grains. The Richardson's exact solution is extended to two-band sstems, and a
new coupled equation is derived according to the procedure of Riclidson's works.
The parity gap and the condensation energy of an ultrasmall two-land supercon-
ducting grain are numerically given by solving the coupled equation. Wediscuss
these properties of ultrasmall grains in relation to the correlation, interband inter-
action and size dependence.

3.1. Exact solution for two-band superconductivity

In this section, we derive an exact solution of the two-band superanductivity for
a reduced BCS Hamiltonian.

3.2. Hamiltonian

We consider a Hamiltonian for two bands 1 and 2 written as:

H=Hy+ Hz+ Hig ; (32)
where
X X
Hi=  "ya'a o a.aacwa; (33)
i ik
X X
Ho= "8 3 g b.bbebe; (34)
j ik
X X
Hint = 012 ajy" a]y#kk#lk" + 012 @/ qy#ak#ak" : (35)
ik ik

The rst and second terms of Eq. (32) correspond to the reduced BCS Hamiltonian
for bands 1 and 2, respectively. The third term means a coupling beteen them
and corresponds to the pair scattering process between thesa® bands (Fig. 7).
ajy (g ) and l:]y (b ) are the creation (annihilation) operator in bands 1 and 2
with spin  and the single-particle levels"sy; and "y, respectively. The sums ofj
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Fig. 7. Two-band system. The dotted line means the chemical p otential; "y; is the single-particle
energy for band n and level j; g; and @ are the intraband pair interaction coupling constants;
g12 are the interband pair interaction coupling constant.

and k are taken over a set ofN; states for band 1 with xed width 2 ~! 1p and a
set of N, states for band 2 with xed width 2 ~! ,p, respectively.

In this study, we assume that the Debye energies for two bands @acide with
each other, i.e.,

'ip=!2p="!p: (36)
Within this assumption, N1 and N, are relatively estimated by the DOS for two
bands as:
Nj 1
N, o, (37)

where ; and , are DOS for two bands, respectively. The interaction constantsy;
and g, can be written as:

u=d; 1; G=0d 2; (38)
whered; and d, are the mean single-particle level spacing,
_2~lp _2~lp
dl_ N]_ 11 2 — N2 11 (39)

and ; and , are the dimensionality interaction parameters for two bands. We
de ne the interband interaction constant as:

p—
o= didy 12: (40)

In summary, we obtain the relation
1 N 1_d.

> No 1 di’

(41)
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The system we are considering consists of two half- lled bands, e&cof which
has equally spacedN, single-particle levels andM, (= N,=2) doubly occupied pair
levels (h = 1;2). We take the single-particle level spacing as our energy unity. Ths,
the single-particle spectrum is given by:

"o =daj 'p; J=1;2::0Ns (n=152): (42)

Richardson has obtained his solution within the single-band model foran arbi-
trary set of single-particle levels. For simplicity, we assume that thee are no singly
occupied single-particle levels. As can be seen from Eq34){( 35), these levels are
decoupled from the rest of the system. They are said to be blockednd contribute
with their single-particle energies to the total energy. The above snpli cation im-
plies that every single-particle levelj is either empty (i.e., jvaci), or occupied by a
pair of electrons (i.e.,a). a/,jvad and . b,jvadi). These are called as the unblocked
level.

3.3. Exact solution

In order to extend Richardson's solution to a two-band system, wede ne two kinds
of hard-core boson operators as:

G = aua; ¢ = alaly; (43)
d = bebs df =By (44)
which satisfy the commutation relations,
¢?=0; [g;¢]l= x@ 29¢); [dg:dl= wq; (45)
??=0; [d;d]= @ 2d'd); [dd;d]= jd; (46)

which re ects the Pauli principle for the fermions they constructed from.
Hamiltonian Eq. (32) for the unblocked levels can then be written as:

X1 X1 Xe X
Hy =2 "1 ijcj 01 C,ka +2 "2 djydj 2 djydk
i ik i ik
X1 e Xz X1
+ 012 ¢/dk + g2 dox: (47)
ik ik

We nd the eigenstates jM1; M,i of this Hamiltonian with M; + M, pairs in the
form
HuiM1;M2iy = E(M1;M2)iM1; M2y

X1 ) & !
Eqy + Eoxx jM1;Maiy; (48)
J=1 K =1
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where E(M1; M>) is the eigenvalue and

LERE
iM1;Maiy = cy Dy jvad ; (49)
J=1 K=1
and
X1 o X o
Cy = 71; Dy = 7]: 50
J l 2" ]_J E 13 J l 2" 2] EZJ ( )
Now, we de ne C} and D} as:
X1 X2
cy= ¢, Dg= d: (51)

Then we can rewrite Eq. @7) as:

K1 X2
Ho=2 "ydg oCiCo+2 "ydd gDIDo
i i
+ 012C§Do + 012D¢Co (52)

The commutation relations for new operators are given as:

1= 2"y Ey’ T2 Eyyl
Xi o1 g X2 1 dq;
Co;C¥]= —31: [DgDYl= — 54
[Co; C31] > Ex [Do; D3] | 7% Eax (54)
X 1 g X1 g
[Hu:CJ1= EuyCy + Ci+ tCy 710] + 012D} 7101 (55)
j 2" Eu j 2"y Eu
and
Xz 1 dd X2 1 dd
[Hu;DY]= ExyDY + DY+ aiD  o———+ 012Cy ———: (56)
j 2"y Eoa J. 2"y Eoz
Using the above-presented commutation relations, we nd:
I
W1 X2 '
HujM1;Maiy = Ew + Exx  jM1;Maiy
J=1 K=1
0 1
X: X1 X: 2
+cy @ %*‘ %Ale(J);Mziu
=1 j 1j 1J 3% 3 130 1J
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0 1
W1 1 W1 2
+Dy @ =2 A ML) Maiy
3a1 ) 2y Buo e, B0 Eag
0 1
M2 Wo ) & 2
+C) 2 =AM M ()i
ke 22 B g Eao Eax
0 1
)& X2 X
+ D% @1 . % + i
K =1 | 22 Ba gy Boxo Eax
j M1;Ma(K)iy ; (57)
where
by 1 ¥ ¥
iM1(L); Maiy = cy C)o Dy jvad ; (58)
J=1 Jo=L+1 K =1
¥ ty 1 ¥
iM1;Mo(L)iy = CJ Dy Dy ojvaci : (59)
J=1 K =1 K 0= L+1
Comparing Eq. (57) with Eq. (48), we obtain', for arbitrary J an'd K,
c D! 1+ giAy Gi2Aok .J'M 1(J); Mzi.u . o (60)
O12A13 1+ QA iM1;M2(K)iy
where
Ko 1 X 2
A = + S 61
" 2"nj Enc Lo L Eno Eno ( )
A nontrivial solution of Eq. ( 60) is derived from the determinantal equation
Fik =1+ qAn)(d+ @Ax) 0HA1Ax =0 (62)

This constitutes a set of M1 + M, coupled equations forM; + M, parameters
Eiy and Exx (3 =1;2;:::;M;K = 1;2;:::;M»), which may be thought of as
self-consistently determined pair energies. Equation §2) is the exact eigenvalue
equation for a two-band superconducting system and can be regded as a gener-
alization of the Richardson's original eigenvalue equation.

3.4. Preprocessing for numerical calculations

To remove the divergences from
changes of the energy variables:

the second term oA,_ in Eq. (61), we make

(63)
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where we assume that the number of pairs is even. Since the compl@air energies
appear in complex conjugate pairs, the total energy is kept in real.

A further transformation is necessary in order to remove the divegences from
the rstterm of Ap_ . We de ne new variablesx, andy, as:

n ="n2 *"n2 1t diXan (Xn 0 (64)
and
f= (R dxA e (o O (65)
where
"n2 = "n2 "2 1! (66)

Considering the sign ofy, , we can express, as:

n = jnje Fon ;
( "
0 for "2, d2x2 0;
noTo w2 2.2 . (67)
=2 for f, dix; > 0:
Then we can rewrite Fjx , by using the new variables, and de ne the result ag-
We extract the real and imaginary parts of F  as:
1
F* = >(F +F )=1+aRi +®R: +(%0 g%)R1 Rz

(1@ %)l 12 cos(1 + 2)
f ou+(m® 3Rz gl sin g
f +(ng O,)R1 glz sin 2 ; (68)

1 .
Fo=2(F F )= (@@ gl sin(1+ 2)

+fog+ (% gf)R2 gl cos 1
+fe+ (g g)R1 g2 cos 2 ; (69)

where

R = 20nXn (1+yn )
" (1 yn)? "ﬁz (1+ yn )zdﬁxﬁ

+4N" n (2 0+ 2+ 2)
e (n * &+ 087 473
Ko on
n n
7 : (70)
je2 12 (2" n )2E 0
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HH HH H

(a) 2M +2M, (b) (2M1+1)+2M2 (©) (2M]+2)+2M2
electrons electrons electrons

Fig. 8. Single-particle levels near the Fermi level in a the ¢ ase of two-band superconductivity. The
dotted lines mean the chemical potential. The left and right ~ bands are band 1 and 2, respectively.
d; and dy are the mean level spacings. (a) 2M 1 +2 M electron system, where M is a humber of
pair levels, (b) (2 M1 +1)+2 M electron system, (c) (2 M1 +2)+2 M2 electron system.

L= 1 v
" (1 yn)? "32 (1+ yn )Zdﬁxﬁ
Mo 2 2 4 2
4yn n n 5 n
= F e a2 oagd
X ) S
n 1 n2 d2 x2
+y _ n2 n"*n (71)
" ng2 12 (2"n n )+ r21 Yn
and
n = n no- (72)
Therefore, for an arbitrary combination of and , we must solve the following
equations:
F* =0;
F =0 ( =1;2::5,M=2; =1;2:0,M=2): (73)

3.5. Results and discussion

We now apply the exact solution for a two-band system to discuss tk properties of
the two-band superconductivity in ultrasmall grains. The single-particle level pat-
terns of the (2M 1+ m)+2 M, electron system i = 0; 1 and 2) under consideration
are represented in Figs.8(a), (b) and (c), respectively. The dotted lines mean the
chemical potential, and d; and d, (d; < d;) are the mean level spacings. As seen
these gures, the additional electrons rst occupy band 1 and then band 2.
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Fig. 9. Typical behavior of pair energy levels of two bands fo
used in calculation are N; =12, N =8, M1 =6, Mo =4, ~lp =50,0 1= 2

r the ground state. Parameters

1:5 and

0 12 0:3. Solid and broken lines correspond to the pair energy level s of band 1 and band 2,
respectively.

Numerical calculations are carried out under the condition thatN; : N> =3 : 2,

“'!D:50and 1= 2=

3.6. Pair energy level
By minimizing the sum of squares of Egs.68) and (69):

Ma =2 Me =2

F= (F2 +F 2 (74)
=1 =1

for various interaction parameters, we obtain a behavior of pair eergy levelsEp;
of two bands as shown in Fig.9, in which the solid and broken lines correspond to
the pair energy levels of band 1 and band 2, respectively. Parametg used in this
calculation areN; =12, N, =8, M1 =6, M, =4,0 1:0 and O 12 0:2.

As seen in the gures, band 2 condenses into degenerate levels,ththe band 1
does not. In general, we can expect that the single-particle levels ia band, whose
mean level spacingd is larger than that of the other band, degenerate faster. The
behavior of the condensing band is qualitatively the same as that in tle case of
calculations for the single band?? The co-existence of the normal band and the

condensed one may be re ected in the opposite phase of the gapstbese bands*?

3.7. Condensation energy

The condensation energy of banch for the (2M 1 + m) + 2 M, electron system can
be de ned as:

m
— Oh

EC(2M1+ m;2M3) = En(2M1+ m;2Mp) + M, + >

E2(2M1 + m; 2M>) ; (75)
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Fig. 10. Condensation energy. Parameters used in calculati on are ~!p = 50, and 1 =
2 = 0:5. Values are normalized by the bulk gap, 1 = Ipsinh Y 2=( 1 2 %2)) or
2= Ipsinh 1( 1=( 1 » 2,)). The solid and broken lines correspond to the condensatio n

energy for bands 1 and 2, respectively. Lines plotted by squa res, by triangles, and by circles are

for the 2M 1 +2 M, electron system, for (2 M1 +1)+2 M3 electron system and for (2 M1 +2)+2 M»

electron system, respectively. (a) The condensation energ y for the interband coupling parameter
12 = 0:01. (b) The condensation energy for 12 =0:1.

where E;,(2M 1 + m; 2M,) and E2(2M; + m; 2M,) are the ground state energies
and the sum of the single-particle energies, respectively.

We calculate the condensation energies and show them in Fig&0(a) and 10(b).
The parameters used in this calculationare =0:5and 12 =0:01for(a), 12=0:1
for (b). Values are normalized by the bulk gap, = !psinh *(=( 2 %)).
The solid and broken lines correspond to the condensation energypif bands 1 and
2, respectively. Lines plotted by squares, by triangles and by circle are for the
2M1+2M, electron system, (M1 +1)+2 M, electron system and (M, +2)+2 M,
electron system, respectively.

As seen in the gures, we can understand that band 2 condensedut band 1
does not because of the sign of values. This di erence of signs maysa be re ected
in the opposite phases of the gaps of these bands. The behavior tife results for
the condensed band (band 2) is qualitatively the same as in the casd the single-
band calculations. The condensation energy of band 2 for the (@1 +2) + 2 M»
electron system is, however, dierent from the others. We can ale see that the
condensation energy is a ected by the interband interaction 1,. This is mentioned
in our previous work.*?

3.8. Parity gap
The parity gap of band n is de ned as:
P = En(2M1 +1;2M5)

%fEn(2M1;2M2)+ En(2M1 +2;2M>)g; (76)
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Fig. 11. Parity gap. Parameters used in calculation are ~! p =50,and 1= 2 =0:5. The solid

and broken lines correspond to the parity gap for bands 1 and 2 , respectively. Lines plotted by
triangles and by squares are for the interband coupling para meter 12 =0:01 and for 12 =0:1,
respectively. Values are normalized by the bulk gap.

which was introduced by Matveev and Larkin and characterizes thedi erence of
even{odd ground state energies?

We have also calculated the parity gaps shown in Figll. The solid and broken
lines correspond to the parity gap for bands 1 and 2, respectivelyLines plotted by
triangles and by squares are for the interband coupling parameter 1, = 0:01 and
for 12 =0:1, respectively. Other parameters used in this calculation are the ame
as for the calculation of the condensation energy. Values are noralized by the bulk
gap.

For the condensed band, we obtain qualitatively the same result ashat in the
case of the single-band calculations, i.e., there is a minimal point and aendency
toward 1 for d! 0. The mean level spacing giving the minimal point is, however,
much less than that for the case of calculations for the single bandThe parity gap
is almost independent of the interband interaction 1,. This is also mentioned in
our previous work 12

We have extended the Richardson's exact solution to the two-bandystem and
have derived a new coupled equation. To investigate the propertiesf the two-band
superconductivity, we have solved the equation numerically and hag determined
the behavior of pair energy levels, the condensation energy and ¢hparity gap.

The band, whose mean level spacing is larger than that of the othdband, degen-
erates and condenses faster. The behavior of the condensingrzhis qualitatively
the same as that for the case of calculations for the single band. Tehco-existence

1230013-23



September 6, 2012 8:37 WSPC/Guidelines-IJMPB S0217979212301

S. P. Kruchinin & H. Nagao

of the normal band and the condensed one may be re ected in thegposite phases
of the gaps of these bands. This phase character appears in eyeof the results of
numerical calculations. Therefore, the phase of a gap is importanto stabilize the

two-band superconductivity.

We have also calculated the condensation energy and the parity gafor two-band
superconductivity. The results suggest that the interband interaction 1, a ects the
condensation energy, but not the parity gap.

In summary, the expression of Richardson's exact solution for tweband super-
conductivity has been presented, by solving numerically a new coupte equation.
Then, the behaviors of pair energy levels, the condensation eneycand the parity
gap have been determined. The results for the condensed band isn@ost qualita-
tively the same as those for the single band calculation and the co-éstence of the
normal band and the condensed one may be originated from the omsite phases of
the gaps of these bands.

4. Kondo E ect Coupled to Superconductivity in Ultrasmall
Grains

The Kondo e ect has attracted a great interest, while consideringthe properties
of semiconductor quantum dots. The Kondo e ect can be undersbod as the mag-
netic exchange interaction between a localized impurity spin and freeconduction
electrons?® To minimize the exchange energy, the conduction electrons tend to
screen the spin of the magnetic impurity and the ensemble forms a $p singlet. In
a quantum dot, some exotic properties of the Kondo e ect have ben observed®®:3!
Recently, Sasakiet al. have found a signi cant Kondo e ect in quantum dots with
an even number of electrons? The spacing of discrete levels in such quantum dots
is comparable with the strength of the electron{electron Coulomb irteraction. The
Kondo e ect in multilevel quantum dots has been investigated theoretically by sev-
eral groups33{35 They have shown that the contribution from many levels enhances
the Kondo e ect in normal metals. There are some investigations onthe Kondo
e ect in quantum dots revealing ferromagnetism® noncollinear magnetism?’ su-
perconductivity *® and so on39:40

Properties of ultrasmall superconducting grains have been also #oretically
investigated by many groups!®(2341 Black et al. have revealed the presence of
a parity-dependent spectroscopic gap in the tunneling spectra ofnanosize Al
grains !> For such ultrasmall superconducting grains, the bulk gap has beenlis-
cussed in relation to physical properties such as the parity gag® condensation
energy’! and electron correlatior?? with the size dependence of the level spacing of
samples?® In the previous works}? we have also discussed physical properties such
as condensation energy, parity gap and electron correlation of ta-gap supercon-
ductivity in relation to the size dependence and the e ective pair scdtering process.
The possibility of new two-gap superconductivity has been also discssed by many
groups#2(51
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In a standard s-wave superconductor, the electrons form pairs with antialigned
spins and are in a singlet state as well. When the superconductivity ad the Kondo
e ect present simultaneously, the Kondo e ect and the supercoructivity are usu-
ally expected to be competing physical phenomena. The local magtie moments
from the impurities tend to align the spins of the electron pairs in the superconduc-
tor, which often results in a strongly reduced transition temperature. Buitelaar et al.
have experimentally investigated the Kondo e ect in a carbon nanoube quantum
dot coupled to superconducting Au/Al leads.3 They have found that the super-
conductivity of the leads does not destroy the Kondo correlationsin the quantum
dot at the Kondo temperature. A more subtle interplay has been pioposed for ex-
otic and not well-understood materials such as heavy-fermion supeonductors, in
which both e ects might actually coexist. 52

In this section, we investigate the Kondo e ect and the supercondictivity in ul-
trasmall grains by using a model which consists of thesd and reduced BCS Hamil-
tonians with the introduction of a pseudofermion. The mean- eld approximation
for the model is introduced and we calculate physical properties othe critical level
spacing and the condensation energy. These physical propertieare discussed in
relation to the coexistence of both the superconductivity and the Kondo regime.
Finally, we derive the exact equation for the Kondo regime in a nanosgtem and
discuss the condensation energy from the viewpoint of the correteon energy.

4.1. Kondo regime coupled to superconductivity

In nanosize superconducting grains, the quantum level spacing gpoaches the su-
perconducting gap. It is necessary to treat the discretized engy levels of a small-
sized system. For ultrasmall superconducting grains, we can coiter the pairing-

force Hamiltonian to describe the electronic structure of the sysem?’ and can
determine the critical level spacing in the case where the supercalucting gap

function vanishes at a quantum level spacing? In this section, we present a model
for a system in the Kondo regime coupled to the superconductivity ad discuss the
physical properties such as critical level spacing and condensatioenergy by using
the mean- eld approximation in relation to the gap function, spin singlet order as
the Kondo e ect, coexistence and so on.

4.2. Model

We consider a model coupled to the superconductivity for quantumdots to inves-
tigate the Kondo e ect in normal metals, which can be expressed bythe e ective
low-energy Hamiltonian obtained by the Schrie er{Wol transforma tion:53

H=Hg+ H;+ Hy; (77)
where

X X

Ho= "«a a + E d&d ; (78)
k;
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X
Hi=J [Sialoa +S awaks+ So(@fo e Aoyl ; (79)
k;k ©
X
H= g a{.. ai#ako#akm : (80)
k;k ©

al (ak ) and & (d ) are the creation (annihilation) operator corresponding to
conduction electrons and the e ective magnetic particle as an impuity, respectively.
In this study, we assume the magnetic particle is a fermion withS = 1=2 for
simplicity. E means an extraction energy given byE-.x = Eo E; included
the Zeeman e ect. The second term in Eq. {7) means the interaction between
conduction electrons and the spin in a quantum dot.S is the spin operator as
Si = ddy, S = did andS, =(d’d- d)dy)=2. The third term corresponds to the
interaction between conduction electrons included in the pairing foce Hamiltonian.
Here, we introduce a pseudofermion for the magnetic particle opeator® as:

d = fy =)

81
&= fo; de= 2o (81)
For this transformation, we have the condition:
frf.+flfa=1; (82)
and we havej i = fYj0i. The spin operator S can be presented asS, = fJfy,
S =f)f-andS, =(f¥f- f)f4)=2. The Hamiltonian can be rewritten as:
X X
Ho = G, G+ Ef ¥f (83)
k;
X
Hl =J fyf 00{0 oCk (84)
kiko; 0
X
Ha= g ¢yt ; (85)
k;k ©
P . P L
wherece = Uia with* = Ui ["i i J=2]Uj . For the sake of simplicity,

we only focus onE, = 0 without an external magnetic eld: E = Ey.

4.3. Mean- eld approximation

In this section, we introduce the mean- eld approximation for the present Hamil-
tonian (77). Eto et al. have presented the mean- eld approximation for the Kondo
e ect in quantum dots. %®

In the mean-eld approximation, we can introduce the spin-singlet arder
parameter

= p5 Mo (86)
k;
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This order parameter describes the spin couplings between the dostates and
conduction electrons. The superconducting gap function can bexpressed as:
X

= Py G i (87)
k
Using these order parameters in Egs. &) and (85), we obtain the mean- eld
Hamiltonian
X X p_ X
Hue = e o+ EfYf + 23 [f o + o fY]
k; k;
X
g [ oo+ chcll: (88)

k

Constraint (82) is taken into account by the second term with a Lagrange multiplier
. In this study, we assume a constant DOS with the energy region othe Debye
energy and the coupling constants can be expressed ds= dJ andg=d .

4.4. Critical level spacing in the Kondo e ect

By minimizing the expectation value of Hyr in Eq. (88), the order parameters
can be determined self-consistently. First, we show the Kondo e et without the
pairing force part (g = 0) in the framework of the mean- eld approximation. Next,
the Kondo e ect in the presence of the superconductivity is discused in relation to
the critical level spacing and the condensation energy. Finally, we érive the exact
equation for the Kondo e ect in ultrasmall grains coupled to normal metals and
discuss properties such as the condensation energy in relation toiéhardson's exact
equation for the superconductivity.

For ultrasmall superconducting grains, the critical level spacingdS©S can be
expressed agif®S = 4! e exp( 1= ) for even number of electrons, wherel p
means the Debye energy. This result suggests that the gap funicin of a nanosize
system with the level spacingd vanishes, when the coupling parameter . is less
than the value (In4! p =d+ ) *. The bulk gap function . with . can be expressed
as ¢=!psh (1= ).

Figure 12(a) shows the gap function of a nanosize system in the frameworkfo
the standard BCS theory. We can nd the region where the gap furction vanishes,
when the coupling becomes less than.. This means the level spacing is larger than
the gap function in this region.

Here, we drive the critical level spacing for only the Kondo regime ( = 0). The
equation determining the singlet order parameter can be expresseas:

X (x X
 Ceox)2+ 27 (59
q
where , = % X = [*%+ E (* E)2+4 2]]=2 and is the chemical

potential. For the case of the critical level spacing, the solution sbws that the
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Fig. 12. Gap function and spin singlet order: (a) the gap func tion. The gap function vanishes in
the region of  values less than . (b) Spin singlet order parameter. In the case of J < Jg, the
singlet order vanishes. The system consists of eight energy levels and eight electrons with the level
spacingd=1:0and ! p =1:0.

spin singlet order parameter vanishes. From Eq. §9), we can nd the critical level
spacingdk°nd® for the Kondo regime.

dkonde =41 e exp lez_y : (90)
When the coupling parameterJ-is smaller than J; = [2p 2(In(4! p=d)+ )] 1, the
spin singlet order parameter vanishes.
Figure 12(b) presents the spin singlet order parameter given by Eq. 86) in the
caseg = 0. In the region of J < J¢, the order parameter vanishes. This result
suggests the critical level spacing in the Kondo e ect.

4.5. Kondo e ect coupled to the superconductivity

Here, we consider a simple system which consists of eight energy léveand eight
electrons and investigate the critical level spacing and the condesation energy of
the coupled system between the superconductivity and the Kondaegime in the
framework of the mean- eld approximation of Eq. (88).

Figure 13(a) shows the spin singlet order parameter and the gap function fo
several cases. We can nd the critical level spacings for the gaphction and for the
spin singlet order parameter. When < . and J> Jg, we can nd only the spin
singlet order parameters. In the region of =  from 1.4 to 1.7 with J=J; = 0:189,
we can nd the coexistence of both the gap function and the spin siglet order
parameter. For =  larger than 1.7, only the gap function still exists and the spin
singlet order parameter vanishes. AtJ=J; = 0:284, we can nd the coexistence
in the region = . = 1:7 2:3. These results suggest that strong local magnetic
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(b)*

Fig. 13. Physical properties in a coupled system: (a) Gap fun ction and spin singlet order param-
eter. (b) Condensation energy. J=J; = 0;0:94741; 1:8948 and 2.8422. Other parameters are the
same.

moments from the impurities make the transition temperature for superconductivity
to be reduced. However, the weak couplings of the superconductivity do not
destroy the spin singlet order parameter at all. These results are igood agreement
with the experimental results.®® We can nd that there is the coexistence region
for both the superconductivity and the Kondo regime.

Figure 13(b) shows the condensation energy for several and J values. We have
found that the condensation energy of the coupled system betven the supercon-
ductivity and the Kondo regime becomes lower than that for the pure supercon-
ductivity. In the coexistence region, the highest value of the conénsation energy
appears in all cases.

4.6. Exact solution for the Kondo regime

The standard BCS theory gives a good description of the phenomem of super-
conductivity in large samples. However, when the size of a supercductor becomes
small, the BCS theory fails. To investigate the physical properties sich as the con-
densation energy, parity gap, etc., it is necessary to make a morecaurate treatment.
For the superconductivity in ultrasmall grains, the exact solution to the reduced
BCS Hamiltonian presented by Richardsorr’ has been applied to investigate the
above-mentioned physical properties-’

By using the wavefunction describing all pair electron excitations, ve can derive
the exact solution for the pairing force (reduced) Hamiltonian

X X0 2
" +
“« Ei Ei E;

=0; (91)
=116
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Fig. 14. Exact solution for the superconductivity: (a) Cond ensation energy of the exact solution
and that obtained in the mean- eld approximation (b) Pairin g energy level with energy level
obtained in the mean- eld approximation. 8 energy levels, 8 electrons, d=1:0,! p =4:0.

whereN and n are the number of orbitals and the number of the occupied orbitals,
respectively andE; corresponds to the exact orbital. Figure14 shows the conden-
sation energy and the pairing energy level for the nanosize supesaductivity. Note
that the physical properties obtained in the mean- eld approximation give a good
description for the high DOS (d!1 ). We have found the di erent behavior of the
condensation energy from that obtained in the mean- eld approximation, as shown
in Fig. 14(a). Figure 14(b) presents the qualitative behavior of the pairing energy
level in the ground state. At about 1.6, above two energy levels in Fig.14(b)
are completely paired. The pairing behavior has been already repoed by many
groups?’:56

Let us derive the exact equation for the Kondo regime in ultrasmall gains.
We can consider the HamiltonianH = Hgo + H; in Eq. (77). We introduce a cre-
ation operator describing all excited states at the spin singlet coufing between a
conduction electron and a pseudofermion:

X f

gy= 2. (92)

« * B
where E; means the exact eigenenergies in the Kondo regime. The exact eigetate
j ni for the Kondo regime can be written asj i = "_; BYj0i. qgher electrons,
which are not related to the spin singlet order, contribute Egingie = 5 p=; “k to the
eigenenergy. The ground state energ¥cs can be written asEgs = E:1 [Ek +~k]-
By operating the Hamiltonian to the exact eigenstate, we obtain the condition:

=0: (93)
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Fig. 15. Condensation energy for the Kondo regime: all param eters used in the system are as
follows: eight energy levels, eight electrons, d=1:0and ! p =4:0.

This equation gives the exact solution for the Kondo regime. Note tlat the creation
operator (92) might be a true boson one as compared with the case of the redude
BCS model.

Figure 15 shows the condensation energy of the exact solution in the Kondo
regime with that obtained in the mean- eld approximation. We can nd the dif-
ferent behavior of the condensation energy from that obtained inthe mean- eld
approximation. However, the behavior is similar to that in the case ofthe super-
conductivity in nanosize systems.

We have investigated properties of the Kondo regime coupled to thesuper-
conductivity in ultrasmall grains by using the mean- eld approximatio n. In the
framework of the mean- eld approximation, we have found the critical level spac-
ing for the Kondo regime. The result suggests that the Kondo e e¢ vanishes, when
the level spacing becomes larger than the critical level spacing.

We have calculated physical properties of the critical level spacingnd the con-
densation energy of the coupled system by using the mean- eld appximation.
From the results, we have found that strong local magnetic momets from the
impurities make the transition temperature for superconductivity to be reduced.
However, weak couplings of the superconductivity do not destroy the spin singlet
order parameter at all. These results are in good agreement with ta experimental
results 3 We have found that there is the coexistence region for both the sper-
conductivity and the Kondo regime.

Finally, we have derived the exact equation for the Kondo regime in a anosys-
tem, which was not an easy task and have discussed the condengat energy from
the viewpoint of energy levels. The further study of the properties in the Kondo
regime with the use of the exact equation will be presented elsewher
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In summary, we have investigated the Kondo e ect and the superonductiv-
ity in ultrasmall grains by using a model which involves the sd and reduced BCS
Hamiltonians with the introduction of a pseudofermion. The mean- eld approxima-
tion for the model have been introduced, and we have calculated pfsical properties
of the critical level spacing and the condensation energy. Thesehysical properties
have been discussed in relation to the coexistence of both the sumenductivity
and the Kondo regime. Finally, we have derived the exact equation fothe Kondo
regime in a nanosystem and discuss the condensation energy frore viewpoint of
energy levels.

5. Interaction of Nanoscale Ferromagnetic Granules in
Superconductor

Recent experiments have fabricated structured arrays of fewmagnetic nanoparti-
cles in proximity to a bulk superconductor. We consider the theory d interactions
between two nanoscale ferromagnetic particles embedded in a sugenductor. In
the London limit approximation, we will show that the interactions bet ween fer-
romagnetic particles can lead to either parallel or antiparallel spin aliggment. The
crossover between these is dependent on the ratio of the interpécle spacing and
the London penetration depth. We show that a phase transition béween spin ori-
entations can occur, as the temperature is varied. Finally, we commnt on the
extension of these results to arrays of nanoparticles in di erent gometries. We
show that a phase transition between spin orientations can occur mder variation
of the temperature. Finally, we comment on the extension of theseesults to arrays
of nanoparticles in di erent geometries.

Magnetism and superconductivity are two competing collective ordeed states
in metals. In the case of ferromagnetism, the exchange interactits lead to the
parallel alignment of electronic spins, while electron{phonon interations in the BCS
superconductivity lead to the spin singlet pairing of electrons. Clealy, these two
types of order are generally mutually incompatible. In bulk systems,the frustration
between the electron singlet pairing and the spin ordering is resolvetly the FFLO
(Fulde{Ferrell, " Larkin{Ovchinnikov 58) state. However, this has proved elusively
experimentally, and few examples are known. In particular the FFLO state appears
to be highly sensitive to disorder.

In recent years, however, there has been observed a great imase of the inter-
est in the interactions between ferromagnetism and superconduivity in arti cially
structured systems. Advances in nanotechnology and microfalication have made
it possible to build hybrid structures containing both ferromagnetic and supercon-
ducting components which interact magnetically or via the proximity e ect. 5960
Superconductor{ferromagnetic{superconductor planar strwctures have been found
to show the -junction Josephson behavio®X{63 Ferromagnet{superconductor{
ferromagnet spin valve structures have also been fabricatéd with potential appli-
cations to spintronics. More complex types of structures have als been produced;
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Fig. 16. Schematic diagram of a nanocomposite superconduct or containing ferromagnetic
granules.

for example, Moschalkovet al. fabricated arrays of ferromagnetic nanoscale dots on
superconducting substrates®>66 A description of such structures based upon the
Ginzburg{Landau theory was developed by Peeter$’

In this section, we consider the interaction between magnetic nangarticles em-
bedded in a superconductor, as shown in Figl6. Theoretical studies of such systems
can be carried out exactly in two limiting cases depending on the relatie magni-
tudes of the London penetration depth and the coherence length, . If we consider
the nanoparticles to be essentially point-like on the scale of both thse character-
istic lengths, then they correspond to e ective point-like magneticc-moments of the
form

X
M@r)= mi (r ri); (94)

where the particle at r; has magnetic momentm;. Interactions between these
isolated moments arise directly from magnetic dipole{dipole forces mdi ed by

the screening of the bulk supercurrents. A second source of thateraction between
the moments is the RKKY interaction modi ed by the presence of the BCS en-
ergy gap . It is clear that the range of the dipolar forces is determined by the
penetration depth , while the usual oscillatory power-law RKKY interaction is

truncated exponentially on a length scale of the order of ,. Therefore, the dipolar
forces dominate for superconductors in the London limitrg , while the RKKY

interactions are more important in the Pippard caser, |, wherery =, t+1 1
and | (I{granular size, {electron coherence length) is the mean free pat§® Here,
we consider the London limit and neglect RKKY interactions. Magnetic impuri-

ties interacting via RKKY interactions were considered by Larkin.®® In the London
limit, we rst derive general expressions for the con guration of magnetic elds and
the interaction energy of an ensemble of ferromagnetic granule§.hen we consider
the case of two interacting nanoparticles. It is found that, as a function of the
temperature, an orientational phase transition can take place. The conditions for
such a phase transition to occur are derived for a chain of ferrongnetic granules.
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Finally, we comment on the application of these results to the deternmation of the
equilibrium con gurations of more general lattices of ferromagnetc particles.

5.1. Magnetic eld of ferromagnetic inclusions in a London
superconductor

We determine the magnetic con gurations in superconducting nan@omposite sys-
tems by means of Maxwell's equations. The total current,j, includes both normal
and superconducting parts,

j=1Js+]n: (95)

The role of the normal currents in a superconductor is negligible, sioe the super-
conductor exhibits weak magnetic characteristics in the normal sate. However, a
normal current will be present within the ferromagnetic inclusions. This normal-
state current can be written in the traditional form

jn=r M ; (96)

where M is the magnetization of a material. The supercurrent obeys the usal
London equation

ng€?

m

rojs= B (97)
in Sl units,”® whereB is the magnetic eld, ng is the super uid density and m and
e are the electron mass and charge, respectively.

Combining relations (95), (96), (97) with the Maxwell equation r B = j;
the magnetic eld can be found in the form

r (r B)+ 2B= or (r M); (98)

where is the London penetration depth of the eld in the superconductor. Since
divB =0, Eqg. (98) can be rewritten as:

r B+ 2B= or (r M): (99)

For the boundary conditions, we assume that the magnetic eld in the supercon-
ductor vanishes far from the region of the ferromagnetic inclusion. According to
these boundary conditions, the solution of Eq. @9) can be expressed as follows:
z
B(r) = 4—0 eroir rGr M(@r9Y); (100)

where the Green's function is given by:

_exp(jr r9=).
r9) = W
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After the double integration by parts and some algebraic manipulatinns, this
expression can be re\évritten in the general form:
3R(R M(r% M9

RS R3

B(r) = 4—0 d®rlexp( R=)

R R? 2R(R M(r%
wherer =r r%R=jr r9.

Expression (102 determines the magnetic eld outside of the ferromagnetic
inclusions. Since the magnetization of the systenM (r) is de ned by (96), we have

in (101) that M (r) = 0 outside of the volume of ferromagnetic granules.

5.2. Magnetic eld of ferromagnetic quantum dots in a
superconducting nanocomposite material

Assuming that the sizes of the ferromagnetic inclusions are on theanometer length
scale, they will appear essentially point-like on the scale of the penedtion depth
. In this case, we can approximate the magnetization as a sum of poirmagnetic

moments, as shown in 94). Using this approximation in the general expression
(102, we nd the result (see Appendix B):

3Ri(Ri mj) m;
exp( Ri=) T —
i ' R? R3

Ri ., R?  2Ri(Ri_mj)

1+ —+ —L - 7
2 2Ri3

B(r) = 2>

(103)

whereR; =r rjandRj = jr rjj.
It is apparent from Eqg. (103 that if the temperature of a superconductor

approachesT.; and the penetration depth ! 1 | then expression (03 tends
to the limit
X 3Ri(Ri m;) m;
_ _O i i i i .
B(= 5 — RS R (104)

i I
which describes the usual magnetic eld of isolated dipoles in the norral-state
medium.

In the other limiting case, if the distance between granules is much m@ than
the depth penetration, we have:
B(r) = o X exp( Ri=) Ri(Ri m)
4 Ry 2 R?

m; (105)

5.3. Interaction energy of quantum dots in a superconducting
nanocomposite material

To determine the collective states of the magnetic moments in sup@onducting
nanocomposite materials in the London limit, we make use the expregsn for the
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free energyF of the systent?
F=_—"— dfB%2+ 2(r B)?g: (106)

Integrating by parts and using the Gauss theorem, we transformgq. (106) to the

following form:
Z Z

F= zi d*rBfB+ ?%r (r B)g= 2 2 d&Br (r M): (07
0
Integrating by parts and using the Gauss theorem again, we tranform Eq. (107)

to the form
4

F= 2 2 &M r ( B): (108)

Then, using the London Eq. 98) and omitting the magnetostatic self-energy from
consideration, we nd the interaction energy of magnetic moments The obtained
expression can be used to determine the collective state of magrigation of an

ensemble of granules:
( !
X X 3Rj mj)(Rj mi) m; m;

U exp( Ry =) L L
ij ij

0
8 .
i
! )
Ri . R} 2Ry m)(Rj mi)
2

1+ —+ :
2 Ri?

(109)
whererij =T ri, Rij = jrj I’ij; i 6 j

5.4. Spin orientation phase transitions in a nanocomposite
material with arrays of ferromagnetic quantum dots

We begin by studying the magnetic con guration of an isolated pair of magnetic
moments. The interaction energy of such a pair can be written as:
3(Riz m)(Riz mz) mp my
R?, R,
Ri R%, 2(R1z m1)(Riz my)
- T2 2 R3
12

U= 2exp( Ri=)

1+ (110)
Let us introduce a coordinate system with the origin at the rst magnetic
moment m; and the polar axis along the line connecting magnetic moments.
In this coordinate system, the magnetic moments have the compamts m; =
m;(cos' i sin i;sin' j sin ;;cos ;) and their interaction energy (110 is written in
the form:
0 exp( Ri2=)

U= —mim;
3
R12

2 fOi" i Rw2=); (111)
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where
f(i;'i;x)= 2(1+x)cos 1€08 2+(1+ x+ x?)sin 1sin ,cos (112)
and' =" 2 "1
Di erentiating the function f( i;' i;x) with respect to angular variables and

equating the results to zero, we nd that there are four possible g&able energy
con gurations:

1= 2201
1= 2= (113)
06 '< 2;
= = =2;
o (114)
1= 2= =2,
115
. (115)
:O, = :
! 2 (116)
06 '< 2;

which are illustrated in Fig. 17.
The further analysis shows that con gurations (115) and (116) are saddle points,

not energy minima. Evaluating the second derivatives of {12, we obtain the

stability condition of con guration ( 113):

2

R R 16 0: (117)
This implies that the ferromagnetic ordering of the pair of magnetic moments is
possible if:

Re %(1 + IOE): (118)

It turns out that if condition ( 118) is violated, then the alternative con guration
(114) is a stable energy minimum. We can conclude that if the temperaturechanges,
and the penetration depth parameter (T) varies in such a way that condition (118
is not satis ed, then the ground state orientation will change from (113) to (114).

This result is readily generalized to ordered arrays of ferromagnét granules,
and so we conclude that orientational phase transitions are possie in systems of
quantum dots in a superconducting matrix. For example, it is clear that condition
(118 can be applied to linear chains of quantum dots. On the other hand,the
results for square or cubic lattices remain to be determined.

We have considered the interactions between nanoscale magnetiod embed-
ded in a bulk superconducting material. Our approach is valid for mateials which
are well described in the London limitrg , since RKKY interactions are negligi-
ble. We have shown that, depending on the dimensionless paramet&= , di erent
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Fig. 17. Four energy saddle points of a pair of ferromagnetic quantum dots, as de ned in ( 113).
Of four, 1 and 2 correspond to the ground state, depending on ¢ ondition ( 118). States 3 and 4 are
never stable.

stable ground states occur. So, as the temperature varies, ongational phase tran-
sitions will take place for periodic arrays of such quantum dots. Of ourse, our
calculation does not include all types of interactions which de ne the orientation

of magnetic moments in space. In particular, we neglect the energgf a magnetic
anisotropy of granules which is determined by the shape of granulesr the type of
their crystal lattice. However, when the shape of granules is clost the spherical
one and the lattice of a ferromagnet has the cubic symmetry, therEq. (109 will

be essentially exact.

In the experimental systems studied by Moshchalko#® a square of Pt/Co
magnetic nanodots was deposited on the surface on the Pb supemductor, which
is of type | (k = 0:48). The dots were about 026 m in diameter, and they were de-
posited on the grid with a spacing of 06 m. For Pb, the penetration depth is 39 nm
at low temperatures. So, this array was in the limit R > and the dot{dot inter-
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action would be expected to correspond to the antiferromagneti@lignment shown
in the second state in Fig.17. With increase in the temperature, the transition to
the ferromagnetic alignment would occur according to Eq. (18 at = 0:36 R,
i.e., 219 nm.

According to the Casimir formula (T) = (0)(1 t%) =2 with t = T=T,,
this would occur at T = 7:14 K, as compared with T, = 7:2 K. Therefore, the
experimental conditions for the transition to be observed are carinly feasible. Of
course, for an exact comparison with theory in this case, our thery should be
generalized to deal with magnetic particles near the surface rathethan with those
embedded in the bulk of a superconductor.

Of course, it would be interesting in the future to generalize our reslts to super-
conductors in the Pippard limit, where the RKKY interactions betwee n quantum
dots will dominate over dipolar forces®®

Expression (110) can be used to study, by means of numerical methods, the
magnet con gurations and the orientational phase transitions in an ensemble of
nanogranules. It is possible to determine the conditions of orientabnal transfor-
mations in the analytic form for the ordered structures (a chain of granules, plane
and volume lattices). Inasmuch as the state of the magnetic substem of a specimen
at phase transitions is changed, this phenomenon can be experimitly observed
under changing a magnetic susceptibility in the region of low elds.

6. Spin-orientation Phase Transition in Superconductors

In order to determine the collective state of magnetic moments in naocomposite
materials with the matrix made of a London-type superconductor,we use formula
103for the energy of magnetic interaction.

First of all, we note that the realization of one or other magnetic conguration
is de ned by both the competition of diamagnetic e ects from the side of the super-
conducting matrix and the magnetostatic interaction in the system of ferromagnetic
granules. At lower temperatures eliminating the thermal disordering of the system,
the magnetostatic interaction leads to a correlation of magnetic manents. As main
conditions for the formation of magnetic con gurations, we take the equivalence of
all sites and the zero value of the net magnetic moment of the lattice The planar
lattice of granules by itself sets a preferred direction in space. Thefore, we will
separate two con gurations from the whole manifold of spatial orientations of mag-
netic moments. The rst con guration is presented in Fig. 18 It is characterized
by the orientation of the magnetization of granules which is orthogmal to the base
plane. The alternation of the magnetization of neighboring granulesdecreases, to
a certain extent, the energy of magnetic interaction. In addition, such a distribu-
tion of magnetic moments favors a decrease of the amplitude of a ngaetic eld
in the superconducting matrix, which is also advantageous from theenergy view-
point. Thus, the given con guration can be considered as a versiomf the magnetic
order.
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Fig. 18. Two-dimensional lattice of magnetic points. Magne tic moments (black color) are
directed up or down (white color); a is the lattice constant.

k Y mnk

Fig. 19. Two-dimensional lattice of magnetic points. Magne tic moments are aligned in the plane
in the form of chains; a is the lattice constant.

A con guration of the second type is shown in Fig. 19. It is characterized by
the distribution of magnetic moments in the base plane of the lattice sich that
the magnetic moments are aligned as magnetic chains with alternatinglirections
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of the magnetization. Here, like the con guration presented in Fig. 18, the main
requirement, the equivalence of the states of magnetic points, isasis ed.

A similar distribution also decreases the energy of magnetostatic irgraction,
on the one hand, and favors a decrease in the amplitude of a magriet eld in a
superconductor, on the other hand. At the same time, the planarorientation of
magnetic moments has the basic distinction from the orthogonal og. For example,
by means of a continuous deformation of the magnetization in the bae plane, the
con guration in Fig. 18 can be transferred into the structure shown in Fig. 19.

Such a system is characterized by a coherent rotation of magnetimoments by
an angle ' relative to the principal direction of the lattice. In this case, there
occurs both the modulation of the direction of moments at sites of he lattice and
some increase in the energy of magnetic chains, but these processare accompanied
by the formation of magnetic vortices in cells, which promotes a deaase in the
energy of magnetic interaction. The states of separate magnetipoints in the lattice
remain equivalent at the zero total magnetization.

Thus, the questions arise how the energy of the array of magnetimoments in
the base plane shown in Fig.20 depends on the angle ' and to which value it
is equal in the equilibrium state. To answer these questions, we coiter relation
(110 for the interaction energy and reduce it to a single sum by virtue of the

\ 4 \EQ\\"@I
S L e g

—_—

-3 -2 -1 0 1 2 3

Fig. 20. Part of the lattice with a modulated planar distribu  tion of the magnetization; a is the
lattice constant. Circles stand for magnetic points, and th e arrows on them indicate the directions
of magnetic moments my k in the base plane (n;k | the spatial indices of magnetic points). The
angle ' de nes the deviation of the moments of magnetic points from t he principal direction of
the lattice. The states of all points in the given congurati  on are equivalent. The net magnetic
moment is zero. The separated circles denote schematically magnetic vortices. The dotted lines
are tangents to the directions of magnetic moments at sites o f the lattice.
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fact that the states of magnetic points are equivalent. In this ca®, in order to

calculate the energy of the lattice, it is su cient to determine the en ergy of a single
magnetic point, e.g.,Mo.o, located at the origin of the coordinate system and then
to multiply the result by the total number of magnetic points N. Relation (110

becomes signi cantly simpler:

_ oN @ @ X _(ri mi)(ri mo,o)
V=72 3%t @ Ter O I

N @ & X _\mi Moo .

"2t @ter L )T (19

By writing formula ( 119), we used the method of di erentiation with respect to the
parameter which should be set equal to 1 after the calculations. The index \"
stands for the summation over all sites of the lattice. Performing he summation in
relation (119), it is convenient to introduce the pair of indices (n; k) de ning the
position of a site in the lattice (Fig. 20) instead of the running index of magnetic
points \i". It is easy to see that the system represented in Fig.20 possesseshe

translational invariance with a period of 2a so that:
Mpk = Mp+21k+2ps
" mrenener (120)
Lbp= 1, 2;:::

The lattice has only four types of magnetic points di ering from one another by a
spatial orientation of magnetic moments. Their vector componens depend on the
angle' in the following manner:

0 1
COos
Mnpk = Mnp+2ik+2p;  M2i2p = Moo = @sin’ A;
0
o 1
cos
Mas1:2p = Myo=m@ sin' A
0
0 1
COSs
Mo 2p+1 = Mo;1 = m@ sin® A; (121)
0
0 1
COoSs
Mas1i2p1 = M= M@ sint A
0
Lp= 1, 2;:::
Lp= 1, 2;:::;

where m is the modulus of the magnetic moment of a site.
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After the substitution of ( 121) in (119 and the summation over sites of the
unbounded lattice, we get the following interesting result. It turned out that the
interaction energy of the system of magnetic points (see Fig20) does not depend
on the angle' and is determined by the relation

Uy _ 0 m?

N~ 4 a
whereN is the number of sites of the lattice,m is the magnetic moment of a granule,
F (a=) is the energy characteristic of a magnetic state which is a univerdgunction
of a single parameter and determines the dependence of the engrgn both the
period and the eld penetration depth in the case where the magndgt moments are
distributed in the base plane of the lattice. It can be represented inthe form of a

F(a=); (122)

sum
. @ @ 1% % exp(2(a=) T
F(a=)= 4 1+ @"’ @ §|:1 - (12 + p2)3=2
@ @
1+@+@
1% R exp( (a=) @FDIFEPFDD
40 s ((21+1)2+(2p+1)2)32
@ @
3 3@+@
1R A (@12 @2p) exp( (a=) @FDZT@P?)
2 (21 +1)2+ (2 p)2)5=2 '

(123)

Thus, there occurs the degeneration of the state in the parametr' in the presence
of a tough correlation of the mutual orientations of moments of the ensemble of
magnetic points. The energies of the con guration shown in Fig.19(1b) and the
ensemble with a modulated distribution of the magnetization (Fig. 20) coincide. In
turn, the determination of the energy of magnetic interaction for the con guration
possessing the orthogonal orientation of magnetic moments (Figl8) requires a
smaller amount of calculations, because the rst sum in formula (19 vanishes.
The result of calculations can be represented in the form:

U, _ 0 m?2
N 4 a
where (a=) is the energy characteristic of the magnetic state which a univeral
function of the single parameter and determines the dependencef the energy on
both the period and the eld penetration depth under the distribut ion of magnetic
moments normally to the base plane of the lattice. This function can ke represented

(a=); (124)
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Fig. 21. Plots of the energy characteristics F (a= ) and ( a= ) of states of the lattice with normal
and planar orientations of magnetic moments, respectively . Values of F (0) and (0) correspond
to the transition of the superconducting matrix into the nor  mal state.

in the form:

( -
XA 4 exp( (a=) P2 )
(2 12+2 p?)3=2

@ 1
(a=)= 2 1 —+ =
4 @ @2 2 1=1 p=0

X‘ X‘ exp( (a:) P 2 (| +1:2)2+2 (p+1:2)2))
(2 (1+1=2)2+2 (p+1=2)2)32

(125)

The calculation of the functions (a=), ( a=) on the basis of relations 23 and
(125 is not a di cult task and can be realized with any mathematical softw are.
The results are presented in the graphical form in Fig.21.

In Fig. 21, we represent the plots of the energy characteristics of two di eent
states of a magnetic lattice versus the ratio of the parameter of aell and the pen-
etration depth of the magnetic eld, a= . The limit a= ! 0 corresponds to the
transition of the matrix into the normal state. It is obvious that a la ttice with planar
orientation of magnetic moments (Figs. 19 and 20) possesses the lower energy in
the normal state at a= = 0. Therefore, the state with the perpendicular direction
of moments (Fig. 18) cannot be realized at all in the absence of a superconductor.
As the temperature decreases and the penetration depth diminisés gradually, the
parameter a= begins to grow. When this parameter attains the valueag=  3:3,
the con guration with the orthogonal orientation of magnetic mom ents (Fig. 18)
becomes more advantageous in energy, and the orientation phasensition occurs
in the system. At a decrease in the temperature, a similar scenariofecevents com-
pletely corresponds to a reorientation of the magnetic moments oén isolated pair
of magnetic points which was considered in the previous work!
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In conclusion, we note that an analogous phase transition can be @ected to
occur in a planar lattice with rectangular cell. The only di erence will co nsist in the
elimination of the degeneration relative to the directions of magneticnoments in the
base plane. Of course, the direct observation of a phase transitiowill be hampered,
because the problem involves the magnetic lattice surrounded by auperconductor.
However, a similar orientation transformation must happen also in a ldtice applied
on the surface of a massive superconductor, though values of éhparameter ap=
will be di erent in this case.

7. Quantum Computer on Superconducting Qubits
7.1. Principle of quantum computers

Silicon microprocessors, being the main element of modern computgr have at-
tained the limit of development. The miniaturization, i.e., the aspiration to place
as much as possible components on a more and more smaller area oftap¢ has
approached the boundary of physical possibilities. Further, it will be impossible
to conserve the stability of the operation of computers. Many regarchers believe
that silicon processors will begin to go into the past in at most ve yeas, and the
production of chips will be based on the other material | carbon nan otubes. It is
worth noting that the computational processes are accompaniedy the release of
heat. R. Feynman said: \Any classical computation is a physical pra@ess running
with the release of heat." As known, the calculations lead to an increae in the
entropy and, hence, to the release of heat. The idea of the creiain of quantum
computers arose several decades ago, when it was proposed &ect the applica-
tion of electric circuits in the processing of information and to pass b the use of
guantum mechanics. The classical computers are processing thefammation only
on the basis of ideas of one bit of information (it corresponds to theransition from
state O to state 1 or conversely). The quantum computers can prcess the informa-
tion, by basing on the ideas of a quantum bit (qubit) which allows one to realize
simultaneously four logical operations (0+0=0,0+1=1,1+0=1,1+1 =2).

Qubit is the abridged notation for quantum bit and means the unity of infor-
mation coded in a quantum system which can be in the state$0i;jli; and in any
superposition of these states.

Let the state of a qubit be described by the statejf i which can be represented
as a superposition of stateg0i and j1i:

jfi = aj0i + bhli;
where
a2+ =1: (126)

Since the devices can register only classical quantities, the meamment of a
quantum bit will give states jOi or j1i with probabilities determined by the squares
of the coe cients a and b.
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The use of the principle of superposition allows one to increase the iafmational
space exponentially with linear growth of the size of a physical systa, because the
register including n qubits can be in a superposition of at once 2 states.

In addition, quantum mechanics admits the existence of the so-calentangled
states possessing no analogs in classical physics.

An ensemble of qubits is a collection of qubits in di erent but given states.

It is worth noting that, even on the level of mathematics, a quantum computer
operates in a basically di erent way than that of a classical compute.

Input data are coded in \quantum cells of memory". In this case, the collection
of qubits becomes a single quantum system. This system undergoése sequence
of elementary quantum operations. Quantum computations are a ealization of the
most astonishing idea to apply the principles of quantum mechanics tahe world
of computers. Ordinary computers, despite their complexity, useclassical laws of
mechanics. In the recent years, the theory of classical comput®ns was developed
on the basis of works by A. Turing. With the appearance of quantumcomputations,
the new possibilities have arisen and the situation is radically changedQuantum
methods can be successfully used in the solution of mathematical pblems, though
the time consumed for the solution of mathematical problems increaes exponen-
tially with the complexity of a problem.

For the theory of quantum calculations, the physical nature of qubits is not of
crucial importance; the basically important point is that the system in the course
of calculations obeys the laws of quantum mechanics.

7.2. Superconducting qubits

The realization of a quantum computer requires the availability of sysgems with
doubly degenerate ground state. For this reason, a great attetion is paid to sys-
tems with two-level wells which can be fabricated by facilities of solid-tate elec-
tronics. The modern technology allows one to produce circuits coraining millions
of transistors and Josephson junctions.

By observing the operation of electrical circuits at temperaturesclose to the
absolute zero, the researchers found a new proof of the fact i the laws of quantum
mechanics are suitable not only for the microscopic objects (atomand electrons),
but also for large electronic schemes which include superconductingjts (qubits).

Many years ago, the attempts to construct a Josephson comper on the basis
of the Josephson tunnel logic hopelessly failed. The principal reasdor the failure
was the huge technological dispersion of parameters of tunnel pctions, which did
not allow one to produce large microcircuits. A Josephson computecan be created
only on the way having nothing in common with that based on semicondgtors,
namely it can be just a quantum computer.

The hope is related to two circumstances. First, the fabrication ofsupercon-
ducting qubits is quite possible in the framework of the up-to-date tchnology.
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Second, the presence of a gap in the spectrum of excitations of agerconductor
allows one to expect the suppression of generation in a system.

Let us consider the rst steps on the way of the construction of asuperconduct-
ing quantum computer. First, we consider, in brief, the Josephsore ect.

7.3. The Josephson e ect

The Josephson e ect is certainly one of the most interesting phenmena in su-
perconductivity. The Josephson e ect consists in the passage ad superconducting
current through a thin dielectric layer separating two supercondctors (the so-called
Josephson junction).

It was predicted by an English physicist B. Josephson on the basis o$uper-
conductivity theory (1962, Nobel's prize in 1973) and discovered exerimentally in
1963. Conduction electrons pass through a dielectric (a Im of coppr oxide 10A
in thickness) due to the tunneling e ect.”>"3

In Fig. 22, we present a scheme of the Josephson tunneling between two srp
conductors. The Josephson stationary e ect consists in that the superconducting

current
Jec = Josin’'; (127)
d 2eV
= (128)

where' is the phase di erence on the interface of superconductorsy is the applied
voltage and Jg is the critical current through the junction.

The Josephson e ect indicates the existence of the electron ordg in super-
conductors, namely, the phase coherence: in the ground statall electron pairs
have the same phasé characterizing their wavefunction 1 = P nNe € 1. Accord-
ing to quantum mechanics, the presence of a phase di erence mustause a current
through the junction. The discovery of such a current in experimat proves the
existence of macroscopic phenomena in the nature which are dirdgtdetermined
by the phase of a wavefunction.

(129)

V——

Fig. 22. Scheme of the Josephson tunneling between two super conductors.
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Fig. 23. Current passing through two series-connected Jose phson junctions.

7.3.1. Current passing through two series-connected Josephsonrjctions

The Josephson current in the scheme drawn in Fig23 can be easily determined with
the help of the elementary Feynman approach to a Josephson jution as a two-
level quantum-mechanical systen?* By introducing an intermediate object, some
island, with the wav@‘tM)n” o into the Bvo-lﬂal_lsystem characterized by the
wavefunctions ;= ng=2€ *and ;= ns=2€" 2, we write the Schredinger
equation in the form:

. d eV

|~d—tl= 5 1+ K o; (130)
d o

|~T=K 1+ K 2+ Ep o; (131)
d s _ ev

|"'T - K 0 2 2. (132)

The formula for a constant current running through two series-@nnected
Josephson junctions at the zero external potential di erence tkes the form:

@rst . K2p__
=~ @fl: E_op Nszsin( 2 " 1): (133)

This relation can be rewritten as follows:

J

Je = Josin( ): (134)

where' = ', ' is the phase dierence. The relation obtained is named the
Josephson formula (the Josephson stationary e ect) and detenines the current of
superconductive electron pairs due to the tunneling transition.
The Josephson coupling energy is an important parameter of the Jephson
junction. From (127), we have:
Z z
hJo . .
E= JVvdt= — sin'd = ——cos': (135)
2 2e
The Josephson e ect is still one of the phenomena that make supeonductors
such a fascinating area of study. Despite the more than 40-year tanse studies and
numerous applications, the Josephson e ect remains an importanteld of researches
in connection with the use of small superconducting grains.
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Fig. 24. Basic diagram of a \quantum interferometer".

7.3.2. SQUIDS

The Josephson e ect allowed one to construct superconducting ierferometers,
SQUIDs (superconducting quantum interference device), which ontain parallel
weak connections between superconductorS. In Fig. 24, we present a scheme with
Josephson junctions.

The total current running from 1 to 2 is equal to:

I = lod[sin( " 1)+sin( ' 2)]; (136)
where
"1="2a 1A
"2="28 1B

are the phase dierences on the rst and the second Josephsorupctions. There
occurs a distinctive interference of the superconducting currets running through
these connections.

Inside the superconductor, the current is zerg 0. We will use the following
formula for the current j:

. 2
i hr ?eA : (137)
We can write:
2eZ
' ' = — A d; 138
1B 1A hC . ( )
Z
2e
' ' = — A d: 1
2B 2A hC c, d ( 39)
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Summing up these two equations, we get:

2e
18 "2t 2a '1A:h— A d=2 —: (140)
c 0
Thus, we have:
" 'o=2 —; (141)
0
where is the total quantum ux.
The ux quantum is de ned as:
h
= —: 142
0= 5 (142)
For a balance SQUID ring system, we can write:
"1= "o+t —;
0
"2="0 —: (143)
0
The total current in the SQUID is:
| = |oSin( ' 1)+ |oSin( '2)
= lgsin 'g+ — 4+ lgsin 'g —
0 0
=2lgsin( g)c0S — = lmax COS — (144)
0 0

With I max =21 sin(’ o).

In this case, the critical current turns out to be periodically dependent on the
ow of an external magnetic eld, which allows one to use such a unit br the exact
measurement of the magnetic eld.

7.3.3. Flux qubit

Let us consider the rst steps on the way of the creation of a supeconducting
computer. The simplest superconducting system demonstrating e coherency is
SQUID which is a superconducting ring including a Josephson junctionat one
point. The energy of this system contains two terms | Josephson transition energy
(cos ) and the energy related to the ring L:

H= Ejcos 2 — +J: (145)

0 2L

Here, is the dierence of superconductive phases at the junction. The supercon-
ductive phase in the ring is proportional to a magnetic ow applied to the ring
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Fig. 25. Scheme of the Josephson tunneling between two super conductors.

(quantization of the magnetic ow). If  « is equal exactly to a half of the magnetic
ow, the potential of a SQUID becomes doubly degenerate:

Two minima of the well correspond to the currents in the ring passingin the
clockwise and counterclockwise directions , respectively.”®

A superposition of these states in SQUID was observed experimeally in
works.”® 7" These experiments demonstrated clearly the possibility to create au-
perposition of states in a system with a macroscopic number of paitles. In the
given case, the circular current including 18° electrons was registered in a loop.
The states participating in a superposition were macroscopically dishguishable,
by di ering from one another by the currents, whose di erence was several mi-
croamperes. We indicate that, at the recent time, the important notion has been
introduced in the course of studies of structures with Josephsojunctions. It is the
notion of macroscopic quantum coherence. In such systems, thiosephson energy
can have two almost degenerate minima at values of the phase whichre sepa-
rated by a potential barrier (Fig. 25). It is possible that the phase passes from
one minimum to another one due to the quantum-mechanical tunneliig, and the
eigenstates of the system are superpositions of the states locadit in the rst and
second minima.

The operation of a superconducting computer requires low tempetures which
are needed, in particular, to suppress heat-induced excitationse@btroying the quan-
tum mechanical state of a system.

It is worth noting that the best condition for the observation of th ese current
states is de ned by a size of the superconducting ring. If the ring &e is taken to be
1 cm, there appear the e ects of decoherence which will destroyhie current states.
But if the ring is taken much smaller (say, 5 m), then it is possible to observe
these states. These states were discovered in experiments withaBi oscillations.””

7.3.4. Charge qubit

The second type of a superconducting bit can be realized in the \Coper pair box"
system which is characterized by two charge states: without exas Cooper pair
jOi and with a single Cooper pairjli. \Cooper pair box" is a nanotransistor with
Coulomb blockage with controlling voltage Vg, as shown in Fig. 26. A \Cooper
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Fig. 26. Cooper-pair box [  denotes a Josephson junction (JJ)], Cg4 and Vg are the capacitor

and the controlling voltage.

pair box" is represented by an aluminum superconducting Im of the order of
1 mm in size with the working temperature of about several milli-Kelvin, which is
signi cantly lower than the superconducting temperature Tc. Its quantum state can
be characterized by the number of Cooper pairs. According to theBCS theory, the
ground state of a superconductor is a superposition of states witdi erent numbers
of Cooper pairs. The excited, i.e., unpaired states in an ordinary sugrconductor
are separated from the ground state by the energy gap. Therefe, as the number
of electrons varies by 1, i.e.N ! N 1, the ground state energy must be changed
by . The sign (plus or minus) depends on that the initial number of electionsN
is even or odd. The e ects of parity of the number of electrons whib are considered
in this chapter in connection with mesoscopic superconductivity wee successfully
measured on nanotransistors with Coulomb blockage.
The Hamiltonian of such a system can be written as:

H = E¢(n ng)?+ Ej cos’; (146)

where E; and E; are the charging and Josephson energies and is the phase
change. In the charging mode wheré&,  E;j, only two lower charged states are of
importance. The controlling voltage Vy induces a charge in the box

Vg .
% 1
where 2 is the charge of each Cooper pair andCy is the gate capacitance. At
ng = 1=2, such a system operates as a two-level atomic system, in which ¢hstates
jOi and jli can be realized. The control is realized by a voltagé/y. On the basis of
such a qubit, a system of two qubits was realized? ’® and the formation of entangled
states was demonstrated. The e ects of parity of the number ofelectrons which are
considered in this chapter in connection with mesoscopic supercondtivity were
successfully measured on nanotransistors with Coulomb blockage.

ng = Cg (147)

7.3.5. Phase qubit

There exists one more possibility to realize SQUIDs with the use of high
temperature superconductors possessing theé-pairing (n-loop ones)’®
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The physics ofd-pairing was considered in Ref.73. Quantum processors on the
base of these SQUIDs are developed at the Canadian company \Dave".

We note also that, in addition to superconducting qubits, quantum comput-
ers use qubits possessing other physical properties. Scientiststae Yale University
took a very ne aluminum plate in the fabrication of a quantum chip. A s ingle qubit
consists of one billion of aluminum atoms which behave themselves, nestheless,
as a single unit that can be in two energy states denoted as 0 and 1ugh quantum-
mechanical states of a qubit cannot be long-term | their lifetime is ab out one
microsecond. But it is su cient for a chip to solve the so-called algorithm. We have
considered the technologies of superconducting computers whiatepresent a new
type of quantum computers. These computers are based on thetlter mechanism
obeying the laws of quantum mechanics. We recall that, till the recat time, the
principle of devices was invariable and the archetype of such devicés mechanical
clocks. In such devices, all stages of their relative motion can be skrved; there-
fore, it is quite simple to understand their structure. On the contrary, the principle
of operation of quantum computers involves the speci c featuresof quantum me-
chanics which are di cult to understand. Nevertheless, by possesing the quantum
resources, we can solve the very di cult complicated problems. In @rticular, the
most important potential eld of application of quantum computers is the problem
of the exact calculation of properties of quantum systems.
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