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Studies in the field of superconductivity theory is one of the most bright, fruitful, and promising trends in the
theoretical physics of condensed matter, since superconductivity remains to be one of the most interesting
research areas in physics. In this review consider such topics of high-Tc superconductivity as the structures
of high-Tc superconductors, phase diagrams, and the problem of pseudogaps and analyze the mechanisms
of superconductivity. We present general arguments as for the pairing symmetry in cuprate superconductors
and investigate their thermodynamical properties within the spin-fluctuation mechanism of superconductivity, by
using the method of functionals. This review deals with a wide scope of theoretical and experimental topics in
superconductivity.
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1. INTRODUCTION
In 1986, Müller and Bednorz discovered the phenomenon
of superconductivity in Cu-oxide compounds of lan-
thanum and barium at the temperature Tc = 35 K,1 which
was marked by the Nobel’s prize in 1987. This dis-
covery gave the additional push to the intensification
of the scientific activity in the field of superconductiv-
ity. For the last 23 years, the superconducting transi-
tion temperature has been increased to 140 K. Moreover,
one may expect the discovery of new superconductors
with higher critical temperatures. Recently, the high crit-
ical temperatures of new Mg-containing superconductors
(MgBr2) (Tc = 39 K) and superconducting oxypnictides
LnO�1−x�FxFeAs (Tc = 50 K) were registered.
The main purpose of solid-state physics is the develop-

ment and the fabrication of substances which possess the
superconductivity at room temperature. At present, there
proceeds the great-scale search for such high-temperature
superconductors. Especially promising is the method of
production of superconducting materials with the help of
the laser spraying of layers.
After the discovery of HTSC, the following problems

become urgent:
(1) Conceptual-theoretic one: the problem of the clarifica-
tion of mechanisms of high-temperature superconductivity.
(2) Engineering and technical ones: the problem of the
practical applications of HTSC.
(3) Research one: the problem of the search for materials
with higher Tc.
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The great interest in the phenomenon of superconductivity
is caused by the basic possibility to use it in the future
for the electric power transfer without losses and for the
construction of quantum high-power generators. This phe-
nomenon would be applied in superconductive electron-
ics and computer technique (superconducting elements of
memory). At the present time, a new trend in technol-
ogy, namely the construction of quantum computers on the
basis of high-temperature superconductors with d-pairing,
is developed.
High-temperature superconductors have unique physical

properties both in the normal state and the superconducting
one.
To comprehend the physics of these complex com-

pounds is one of the main tasks of the theory of
superconductivity, whose solution will alow one to
explain the mechanism ensuring the high-temperature
superconductivity.
The disappearance of resistance on the cooling of super-

conductors down to a certain critical temperature is one of
the most characteristic effects in superconductors. But, in
order to understand the reason for the rising of supercon-
ductivity, it is necessary to study the other effects which
accompany this phenomenon.
Consider briefly the main properties of high-temperature

superconductors (HTSC):
(1) New HTSC have a great anisotropy across the axis c
and possess a multilayer structure. The main block defin-
ing the metallic and superconductive properties is planes
with CuO2 which form the square lattices of Cu ions.
(2) HTSC are superconductors of the second kind
(l/κ � 1, where l—the coherence length, and κ—the
penetration depth of a magnetic field).
(3) High-temperature superconductors have high critical
temperatures Tc.

Sergei Kruchinin (1957)—is leading scientist of the Bogolyubov Institute for Theoretical
Physics, NASU (Kiev, Ukraine). Head of the chair of Applied Physics at the National Avi-
ation University. Professor of NAU. Kruchinin has published significant original works in
the fields of nuclear physics and many-particle systems, solid-state physics, superconduc-
tivity, theory of nonlinear phenomena, nanophysics. He is the author and co-author of more
than 100 scientific works which have been published in leading scientific journals. He has
been using advanced mathematical methods to solve the posed problems. Since the time
high-temperature superconductors were discovered, Kruchinin has intensively studied their
physical properties. In particular, it is worth noting the work carried out jointly with Davy-
dov Interlayer Effects in the Newest High-Tc Superconductors (Physica C, 1991), where
the theory of the non-monotonous dependence of the critical temperature of superconduc-

tivity on thenumber of cuprate layers in the elementary cell of high-temperature superconduc-tors was developed. This
work has remained up to date in connection with the search for new superconductors operating at room temperature.
Kruchinin’s works on superconductivity were included in the monograph Modern aspects of Superconductivity: Theory
of Superconductivity (World Scientific, Singapore, 2010, jointly with Nagao) which shows the contemporary status of
the problems of high-temperature superconductivity. Kruchinin was the organizer of six international conferences on
the current problems of high-temperature superconductivity and nanosystems whichwere held in the town of Yalta. Five
books in Springer and one book in World Scientific publishing houses were published under his guidance.

(4) They have antiferromagnetic ordering of spins of Cu
in the CuO2 planes and powerful spin fluctuations with a
wide spectrum of excitations.

At the present time, there exists no theoretical approach
which would explain the totality of thermodynami-
cal, magnetic, and superconductive properties of high-
temperature superconductors from the single viewpoint.
The electron–phonon mechanism of pairing, being prin-

cipal in standard superconductors, gives a considerable
contribution to the establishment of the superconducting
state in high-temperature superconductors. But, in order
to attain the proper description, it is necessary to con-
sider the other mechanisms inherent to high-temperature
superconductors.
One of such mechanisms is the spin-fluctuation one pro-

posed by Pines (USA). The reason for the pairing of elec-
trons can be the scattering of electrons on spin fluctuations.
This model of pairing is one of the most actual models of
high-temperature superconductivity.
The thermodynamics of superconductors at low tem-

peratures is determined by the excitation of two quasi-
particles. In the traditional superconductors with pairing
of the BCS type, the energy gap is isotropic (s-pairing),
and the temperature dependence of the heat capacity has
exponential form ∼ exp−�/kBT , where � is the supercon-
ductor’s gap. In superconductors with anisotropic pairing,
the temperature dependence of the heat capacity has power
character, namely, T n. The appearance of such tempera-
ture dependences is related to that the superconductor’s
gap has zeros on the Fermi surface. The development of
the thermodynamics of this model is the actual problem of
high-temperature superconductors.
In Section 2, we consider the history of the development

of studies of the phenomenon of superconductivity. The
structure of high-temperature superconductors and their
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physical properties are analyzed. We make survey of the
mechanisms of superconductivity and discuss the problem
on the symmetry of the order parameter.
We draw conclusion that, on the whole, the most prob-

able is the “synergetic” mechanism of pairing which
includes, as components, the electron–phonon and spin-
fluctuation interactions in cuprate planes.
Only if the interaction of all the degrees of freedom

(lattice, electronic, and spin ones) is taken into account, a
number of contradictory properties observed in the super-
conducting and normal phases can be explained. Moreover,
one needs also to consider a complicated structure of high-
temperature superconductors. It will be emphasized that
new experiments should be executed in order to explain
the available experimental data.
In this section, we also consider the thermodynam-

ics of the spin-fluctuation mechanism of pairing, present
the method of functional integration for the calculation
of thermodynamical properties on the basis of the Pines
spin-fluctuation Hamiltonian, and deduce the Schwinger–
Dyson equations for Green’s functions and equations for
the thermodynamic potential. Based on the Schwinger–
Dyson equation, we obtain equations for the superconduc-
tor gap, which are used in numerical calculations of the
thermodynamics of high-temperature superconductors. We
present analytic formulas for the thermodynamic potential
and its jump. The numerical calculations of the tempera-
ture dependence of the electron heat capacity indicate that
the temperature dependence of the heat capacity is propor-
tional to the square of the temperature. We emphasize that
such temperature dependence is related to the d-pairing. It
is shown that the measurement of the temperature depen-
dence of the heat capacity can be a supplementing test
for the establishment of a type of the symmetry of pair-
ing in high-temperature superconductors. The jump of the
heat capacity of cuprate superconductors near the critical
temperature is evaluated as well.

2. HISTORY OF THE DEVELOPMENT
OF SUPERCONDUCTIVITY

The phenomenon of superconductivity was discovered by
the physicist Kamerlingh-Onnes at the Leiden Labora-
tory (the Netherlands) in 1911, in the same year when
Rutherford discovered an atom. Kamerlingh-Onnes regis-
tered the disappearance of resistance of Hg at the temper-
ature T = 4�5 K. This state was called superconducting.
Being cooled down to a temperature less than the above-
mentioned critical temperature, many conductors can be
transferred in the superconducting state, in which the elec-
tric resistance is absent. The disappearance of resistance is
the most dramatic effect in superconductors. But, in order
to comprehend the reason for the origin of superconductiv-
ity, we need to study the other effects accompanying this
phenomenon. The dissipationless current states in super-
conductors were a puzzle for a long period.

The phenomenon of superconductivity is a bright
example of the manifestation of quantum effects on the
macroscopic scale. At present, the superconductivity occu-
pies the place of the most enigmatic phenomenon in
condensed-state physics, namely in the physics of metals.
The main purpose of solid-state physics consists in the

creation of superconductors which have the superconduc-
tive property at room temperature. At the present time,
the researchers continue the wide-scale search for such
high-temperature superconductors by testing the variety of
various substances.
A number of phenomenological models were proposed

to clarify the phenomenon of superconductivity, namely
the models advanced by London and Ginzburg–Landau.2,3

The success of the Ginzburg–Landau theory was related
to the circumstance that it is placed in the mainstream of
the general theory of phase transitions.
Among the first microscopic theories devoted to the con-

sideration of the electron–phonon interaction, the work by
Fröhlich4 is of the greatest importance.

The following stage in the development of supercon-
ductivity started from the universal theory of BCS pub-
lished in 19575 which strongly promoted the subsequent
study of superconductivity.6 The authors of this theory
were awarded by the Nobel’s prize.
The BCS theory gave the possibility to elucidate a lot

of experiments on superconductivity of metals and alloys.
However, while developing the theory, some grounded
assumptions and approximations were accepted. There-
fore, the BCS theory was needed in a substantiation with
the help of more strict arguments. This was made by Aca-
demician Bogoliubov in Ref. [6]. He developed a micro-
scopic theory of the phenomena of superconductivity and
superfluidity. By using the Fröhlich effective Hamiltonian,
Bogoliubov calculated the spectrum of excitations of a
superconductor within the method of canonical transfor-
mations proposed by him in 1947.
In 1962, Josephson advanced the theory of tunnel

effects in superconductors (the Josephson effect) which
was marked by the Nobel’s prize in 1973.7 This discov-
ery strongly intensified the experimental studies of super-
conductivity and was applied to electronics and computer
technologies.
In 1986, Müller and Bednorz discovered high-

temperature superconductors,1 which initiated the huge
“boom” manifested in the publication of plenty of
works. The principal thought of Müller was the follow-
ing: by selecting the suitable chemical composition, one
can enhance the electron–phonon interaction and, thus,
increase the critical temperature Tc. Müller and Bednorz
found a new class of high-temperature superconductors,
the so-called cuprate superconductors.
High-temperature superconductors are studied already

26 years by making significant efforts, but the while
pattern is not else clear completely. This is related to
a complicated structure of cuprates, difficulties in the
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Fig. 1. The evolution of critical temperatures since the discovery of
superconductivity.

production of perfect single crystals, and a hard con-
trol over the degree of doping. The comprehension of
HTSC will be attained if our knowledge about HTSC will
approach some critical level which will be sufficient for
the understanding of a great amount of experimental data
from the single viewpoint.
In Figure 1, we present the plot of the critical tempera-

tures of superconductivity over years.8,9

3. STRUCTURAL PROPERTIES
OF HIGH-TEMPERATURE
SUPERCONDUCTORS

The properties of new high-temperature superconductors
differ essentially from the properties of traditional super-
conductors which are described by the BCS theory. Let us
briefly consider the main properties of high-temperature
superconductors. As known, the atomic structure defines
the character of chemical bonds in solids and a num-
ber of relevant physical properties. Even small changes
of the structure lead frequently to significant changes of
their electron properties; for example, at the phase tran-
sitions metal-dielectric. Therefore, the study of a crystal
structure with long-range atomic order and its dependence
on the temperature, pressure, and composition is of great
importance for high-temperature superconductors. These
investigations are significant for the comprehension of
mechanisms of high-temperature superconductivity.
At the present time, we have several families of

HTSC: thermodynamically stable Cu oxides containing
lanthanum, yttrium, bismuth, thallium, and mercury.9

We note that the structure of all Cu-oxide supercon-
ductors has a block character. The main block defining

Fig. 2. Elementary cell of yttrium ceramics YBa2CuO7: (1)—yttrium,
(2)—barium, (3)—oxygen, (4)—copper.

metallic and superconductive properties of a compound is
the plane with CuO2 which form the square lattices of
Cu ions coupled with one another through oxygen ions.
Depending on the composition, the elementary cell of a
high-temperature compound can have one, two, and more
cuprate layers. In this case, the critical temperature of
the superconducting transition increases with the number
of cuprate layers. In Figure 2, we present an elemen-
tary cell of the orthorhombic structure of yttrium ceramics
YBa2Cu3O7−�� �≈ 0�1–0.3. The maximum Tc ≈ 90 K. The
size of the cell is characterized by the following parame-
ters: a = 3�81 Å, b = 3�89 Å, c = 11�7 Å.
Thus, the high-temperature superconductors are charac-

terized by both large volumes of elementary cells and a
clearly manifested anisotropy of layers.
Of significant interest is the discovery of the compounds

Bi2CaSr2Cu2O8 (Bi/2-1-2-2) and Tl2CaBa2Cu2O8 (Tl/2-1-
2-2) with the temperature of the superconducting transition
Tc > 100 K. These compounds can have different numbers
of cuprate layers and are described by the general formula
A2CanY2CunO2n4, where A = Bi(Tl), Y = Sr(Ba). Their
temperature Tc depends on the number of cuprate layers
and take values of 10, 85, and 110 K for the compounds
with Bi and 85, 105, and 125 K for the compounds with
Tl for n= 1, 2, 3, respectively. We mention also the com-
pounds with Tl with the single layer Tl–O with the general
formula TlCan−1Ba2CunO2n+3(Tl/1� � �), where the number
of cuprate layers reaches n = 5�
Below, we present the structures of the family of Tl-

based superconductors in Figures 3 and 4.
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Fig. 3. Schematic distribution of ions in the unit cell of superconductors
Tl1Ba2CaN−1CuNO2N+4 or, in the brief notation, Tl(1:2:N −1:N ) at N =
1�2� � � � �5.

In Table I, we show the dependences of Tc and the inter-
plane distance (Å) on the number of layers in the unit
cell N . The explanation of the dependence of the critical
temperature on the number of cuprate layers is an urgent
problem.10,11

All high-temperature superconductors have a compli-
cated multiband structure 12 shown in Figure 5.

We note the importance of the structure of zones near
the Fermi level. For example, the structures of the bands

Fig. 4. Schematic distribution of ions in the unit cell of superconductors
Tl1Ba2CaN−1CuNO2N+4 or, in the brief notation, Tl(1:2:N −1:N ) at N =
1�2� � � � �5.

Table I. Tl-based systems Tl1Ba2CaN−1CuNO2N+3.

N 1 2 3 4 5 6

a (Å) – 3.8500 3.8493 3.8153 3.8469 –
Tc (K) 13–15 78–91 116–120 122 106 102

of two superconductors (high-temperature Bi2Sr2CaCu2O8

and low-temperature Bi2Sr2CaCuO6) are significantly dif-
ferent at point K. The energy interval from the band bot-
tom to the Fermi surface is equal to 0.7 eV at point K for
the high-temperature superconductor and 0.1 eV for the
low-temperature one. The explanation of the influence of
the multiband structure on Tc is given in paper.12

It is worth noting that all copper-oxide superconduc-
tors have block character of their structure. The main
block defining the metallic and superconductive proper-
ties of a compound of a plane with CuO2 which contains
the square lattice of Cu ions coupled with one another
through oxygen ions. Depending on the composition, the
elementary cell of a high-temperature compound can have
one, two, three, and more cuprate layers. Moreover, the
critical temperature of the superconducting transition has
a nonmonotonous dependence on the number of cuprate
layers.10

3.1. Phase Diagram of Cuprate Superconductors
All electron properties of high-temperature superconduc-
tors depend strongly on the doping. High-temperature
superconductors without doping are dielectrics and anti-
ferromagnetics. As the concentration x increases, these
materials become metals. Superconductivity arises at large

Fig. 5. Structure of energy bands near the Fermi energy for: (a) high-
temperature superconductor Bi2Sr2CaCu2O8 and (b) low-temperature
superconductor Bi2Sr2CaCuO6.
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Fig. 6. Phase diagram of cuprate superconductors in the temperature-
doping variables, TN—the Néel temperature, Tc—the critical temperature
of the superconducting transition, T ∗—the characteristic temperature of
a pseudogap, T 0—upper crossover temperature.

x, behind the limits of the magnetically ordered phase.
The experiments showed that the charge carriers have
the hole character for all classes of high-temperature
superconductors.
It becomes clear recently that the high-temperature

superconductivity is related to peculiarities of the behav-
ior of these compounds in the normal phase. As seen
from the phase diagram (Fig. 6), the superconducting
states arise near the antiferromagnetic phase. In yttrium-
containing systems, the antiferromagnetic and supercon-
ducting regions adjoin one another.
The experiments on the inelastic magnetic scattering of

neutrons indicate the existence of strong magnetic fluctu-
ations in the doped region, even beyond the limits of the
antiferromagnetic phase. This points out the important role
of antiferromagnetic fluctuations in the compounds with
high-temperature superconductivity.
In high-temperature superconductors, the gap is present

in the absence of the phase coherence, i.e., in nonsuper-
conducting specimens. This gap is called a pseudogap.
A pseudogap is shown in Figure 6. It appears at tem-
peratures less than some characteristic temperature T ∗

which depends on the doping. Its nature is not completely
explained else.
The study of a pseudogap in the electron spectrum of

high-temperature superconductors was carried out in many
works.13

Metals become superconductors, if their free electrons
are bound in Cooper’s pairs. Moreover, the pairs are
formed in such a way that their wave functions have the
same phase. The phase coherence is responsible for the
change of the resistance on the cooling below the critical
temperature Tc. The presence of coupled pairs in a super-
conductor causes the appearance of a gap in the spectrum
of excitations. In the standard superconductors, the phase
coherence of pairs appears simultaneously with the appear-
ance of pairs. From one viewpoint, a pseudogap is related
to the appearance of coupled pairs, which is not related to
the phase coherence.

Another viewpoint consists in the following. The pseu-
dogap arises in HTSC in connection with the formation
of magnetic states which compete with superconducting
states. The efforts of experimenters aimed at the solution
of this dilemma are complicated by a strong anisotropy
of the superconductor gap. Some physicists believe that
the most probable situation is related to the creation of
the superconducting state with paired electrons at a cer-
tain doping which coexists with antiferromagnetism. It is
possible that just it is the “new state of matter” which has
been widely discussed for the last years in connection with
HTSC.

3.1.1. Antiferromagnetism of HTSC
An interesting peculiarity of copper-oxide compounds
which has universal character consists in the presence of
the antiferromagnetic ordering of spins of Cu in the CuO2

planes. The sufficiently strong indirect exchange interac-
tion of spins of Cu induces the 3D long-range antiferro-
magnetic order with the relatively high Néel temperatures
TN = 300–500 K.14 Though the long-range order disap-
pears in the metallic (and superconducting) phase, strong
fluctuations with a wide spectrum of excitations are con-
served. This allows one to advance a number of hypothe-
ses on the possibility of electron pairing in copper-oxide
compounds through the magnetic degrees of freedom.
Therefore, the study of the antiferromagnetic properties

of high-temperature superconductors is of importance for
the verification of the hypotheses on the magnetic mecha-
nism of superconductivity. The interaction of spins of Cu
in a plane has 2D character, and their small values, S =
1/2, lead to significant quantum fluctuations.
The first indications to the existence of antiferromag-

netism in the copper-oxide compounds were obtained on
the basis of macroscopic measurements of susceptibility.
The detailed investigation of both the magnetic structure
and spin correlations in the metallic phase became possible
only with the help of the neutron scattering.

4. MECHANISMS OF PAIRING OF
HIGH-TEMPERATURE
SUPERCONDUCTORS

To explain the high-temperature superconductivity, a lot of
models and mechanisms of this unique phenomenon were
proposed. The key question is the nature of the mechanism
of pairing of carriers. There are available many different
models of superconductivity, among which we mention the
following ones: the magnon model, exciton model, model
of resonant valence bonds, bipolaronic model, bisoliton
model, anharmonic model, model of local pairs, plasmon
model, etc. We give some classification of mechanisms
of pairing for high-temperature superconductors which is
shown in Figure 7, according to Ref. [15].
This classification demonstrates the diverse physical pat-

tern of high-temperature superconductors.

6 Rev. Theor. Sci., 2, 1–22, 2014
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Fig. 7. Classification of mechanisms of pairing in HTSC.

Together with the ordinary BCS mechanism based on
the electron–phonon interaction, there exist many other
mechanisms, as was mentioned above. All these models
used the conception of pairing with the subsequent forma-
tion of the Bose-condensate at temperatures Tc irrespective
of the nature of the resulting attraction.

4.1. Specific Mechanisms of Pairing in
Superconductivity

Consider the models most popular at the present time.
Along with the ordinary BCS mechanism based on the
electron–phonon interaction, we turn to the magnetic, exci-
ton, plasmon, and bipolaronic mechanisms of pairing.
All these models applied the conception of pairing with
the subsequent formation of a Bose-condensate (at cer-
tain temperatures Tc) regardless of the reasons for the
attraction.
The BCS theory presents the formula for the critical

temperature Tc in the case of the weak electron–phonon
interaction:

Tc = 1�14� exp�−1/N0V � (1)

where � = ��D/kB, ��D is the Debye energy, N0 is the
density of states of the Fermi level, and V is the attractive
pairing potential acting between electrons.

The maximum value of the critical temperature given by
the BCS theory is 40 K. Therefore, there arises the ques-
tion about the other mechanisms of pairing. The interaction
of electrons is repulsive, i.e., one needs to seek a “trans-
fer system” in metals which is distinct from the phonon
system. The general scheme of the interaction of electrons
via a transfer system X can be schematically presented as{

e1+X → e11 +X∗

e2+X∗ → e12 +X
(2)

where ei corresponds to an electron with momentum pi,
X is the ground state, and X∗ is the excited state of the
transfer system.
As a result of this reaction, the system returns to the

initial state, and the electrons make exchange by momenta.
It can be shown that such an interaction leads to the

attraction, and the critical temperature is given by the
formula

Tc ∼ �E exp�−1/	�

where �E is the difference of energies of the states X and
X∗, and 	 depends on the interaction of electrons with the
system X.16

4.2. Magnetic Mechanism of Pairing
The magnetic mechanism of pairing in high-temperature
superconductors was studied by many researchers. These
studies used the assumption that the pairing is realized
due the exchange by spin excitations—magnons, i.e., the
transfer system is the system of spins in a magnetic metal.
Magnon is a quasiparticle which is the quantum synonym
of a spin wave of excitation in a magnetically ordered sys-
tem. A great attention was attracted by the pioneer work
by Akhiezer and Pomeranchuk (see Refs. [17, 18]). They
considered the interaction between conduction electrons
caused by both the exchange by acoustic phonons and
an additional interaction related to the exchange by spin
waves (magnons). It was shown that superconductivity and
ferromagnetism can coexist in the same spatial regions.
At sufficiently low concentrations of the ferromagnetic
component, an increase of its concentration leads to an
increase of Tc in the case of the triplet pairing. Within
the phonon mechanism, the pairing occurs in a singlet
state, then an increase of the concentration of the ferro-
magnetic component induces a decrease of Tc. It is known
that ferromagnetism competes with superconductivity. The
different situation is characteristic of antiferromagnetism.
High-temperature superconductors are antiferromagnetic
dielectrics. As was mentioned above, high-temperature
superconductors reveal strong magnetic fluctuations in the
region of doping which can be responsible for the pairing.
In this chapter, we will consider the spin-fluctuation model
of pairing.
After the discovery of HTSC, a lot of relevant works

dealt with namely the problem of the evolution of a system
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of Cu ions under the transition from the dielectric antifer-
romagnetic state to the metallic one.
It is worth also noting the model of resonance valence

bonds (RVB) which was advanced by Nobel’s Prize win-
ner Anderson in 198719 who made attempt to explain the
Cooper pairing in HTSC by the participation of magnetic
excitations. The Anderson model is based on the concep-
tion of magnetic ordering which was named the model of
resonance valence bonds. The RVB mechanism ensures the
joining of carriers in pairs with compensated spin, the so-
called spinons. At the doping of HTSC compounds, there
arise holes which can form the complexes with spinons-
holons. Superconductivity is explained by the pairing of
holons, i.e., by the creation of spinless bosons with double
charge. That is, the pairing of carriers in the RVB model
is realized due to the exchange by magnons. At low tem-
peratures, the paired holons form a superconducting con-
densate. The RVB model has played a positive role, by
attracting the attention of researchers to the study of anti-
ferromagnetism in HTSC though spinons and holons have
not been experimentally identified.

4.3. Exciton Mechanisms of Pairing
According to the general principle concerning the “trans-
fer system” in superconductors, the electron–phonon inter-
action should not be obligatorily realized. Some other
interaction ensuring the pairing of electrons can be suit-
able. In principle, the mechanism of superconductivity
can be switched on by bound electrons which interact
with conduction electrons. The first exciton model, in
which the pairing is realized due to electron excitations,
was proposed by Little20 for organic superconductors and
Ginzburg and Kirzhnitz2 for layered systems. In the con-
struction of this model, it was necessary to assume the
existence of two groups of electrons: one of them is related
to the conduction band, where the superconducting pair-
ing occurs due to the exchange by excitons which are
excitations in the second group of almost localized elec-
trons. In view of the many-band character of the electron
spectrum, layered structure, and other peculiarities of the
electron subsystem in high-temperature superconductors,
such a distribution of electron states is quite possible. This
underlies the development of a lot of exciton models. The
searches for superconductivity in organic materials were
stimulated to a significant degree by the idea of Little
about a possibility of high-temperature superconductivity
due to the excitonic mechanism of the Cooper pairing of
electrons in long conducting polymeric chains containing
lateral molecular branches-polarizers. Since the mass M of
such excitonic excitations is small, it would be expected
to observe a high value of the temperature Tc ∼ M−1/2.
But this model was not practically realized, since high-
energy intramolecular excitonic excitations cannot ensure
the binding of electrons in pairs.
At the present time, a number of quasi-one-dimensional

organic superconductors with metallic conductance have

been synthesized. They pass to the superconducting state at
T = 10 K. Crystals of similar organic superconductors con-
sist of, as a rule, planar molecules packed in zigzag-like
stacks which form chains. The good overlapping of elec-
tron wave functions of neighboring molecules in a stack
ensures the metallic conductance along a chain. The over-
lapping of electron wave functions of neighboring chains is
small, which leads to the quasi-one-dimensional character
of the electron spectrum and to a strong anisotropy of elec-
tronic properties of a crystal. Up to now, no experimental
proofs of a manifestation of the excitonic mechanism is
such systems are available.
As the example of a laminar system, we mention

a quasi-two-dimensional structure of the “sandwich”
type (dielectric–metal–dielectric). In such structures, the
Cooper pairing of electrons in a metal film occurs due to
the attraction caused by their interaction with excitons in
the dielectric plates.

4.4. The Anharmonic Model and
Superconductivity

It is known that the appearance of superconductivity is
often preceded by structural transformations in a crys-
tal. They are usually explained within the anharmonic
model. In the opinion of some researchers,9 such structural
transformations foregoing the start of superconductivity
decrease significantly the frequencies of phonons and, due
to this, increase the parameter of electron–phonon inter-
action. The softening of the phonon spectrum is caused
by the great amplitudes of displacements of ions in the
two-well potential which models the structural transfor-
mations. In some works,14 the effect of a structural trans-
formation on superconductivity in the limiting case of a
weak pairing interaction and the isotropic gap was studied.
The properties of high-temperature superconductivity were
studied also within the model, where the superconductivity
is enhanced due to the singularity of the density of elec-
tron states which appears at structural or antiferromagnetic
phase transitions. The weak point of the models relating
the superconductivity to structural phase transitions owes
to a significant temperature interval between the known
structural transitions and the temperature Tc. The works,
where non-phonon pairing mechanisms are introduced,
include the studies14 which use the Hubbard Hamiltonian
in systems, where only the interaction of repulsive type is
present. It is considered that the effect of pairing is caused
by the kinematic interaction at a non-complete occupation
of Hubbard subbands. Unfortunately, no clear comprehen-
sion of the nature of the arising attraction is attained in
this case. It is possible that the bound state of quasiparti-
cles is virtual, i.e., it decays. The search for new mecha-
nisms of superconductivity caused by a strong correlation
of electrons in cuprate superconductors with quasi-two-
dimensional electron structure is reduced to the search
for new non-standard ground states. We briefly mention
the polaron mechanism of pairing which is related to the
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Jahn–Teller effect well-known in the quantum chemistry of
complex compounds. The essence of the Jahn–Teller effect
consists in that a non-linear system in the presence of
the electron degeneration deforms spontaneously its struc-
ture so that this degeneration disappears or decreases. The
Jahn–Teller effect leads to the rearrangement of the atomic
orbitals of copper under conditions of the octahedral oxy-
gen surrounding. A displacement of oxygen ions inside of
an elementary cell which is caused by the appearance of a
quasiparticle induces the displacement of equilibrium posi-
tions in the neighboring cells. In such a way, there arises
the strong electron–phonon interaction of a quasiparticle
with a local deformation.

4.5. Van Hove Singularities (vHs)
A van Hove singularity (vHs) in the density of states
(DOS) N�E� has been proposed as a Tc-enhancement
mechanism for intermetallic superconductors two decades
ago. All cuprate superconductors possess two-dimensional
elements of their structures. In the construction of the
microscopic theory of high-temperature superconductivity,
it is important to clarify the specific features of the disper-
sion E�k� and the behavior of the density of states N�E�.
For a two-dimensional problem (n = 2, 2D), the density
of states is independent of the energy, N�E� = constant,
and the band is dispersionless. The photoemission exper-
iments indicate the existence of an almost flat band near
the Fermi surface for cuprate superconductors. The pres-
ence of a flat band and an isoenergetic surface in the form
of the elongated saddle leads to the existence of van Hove
singularities in the density of states near the Fermi sur-
face. In this model in the calculations of Tc by the BCS
formula, N�E� is replaced by N�EF�. The formula for Tc

looks like

Tc = 1�14� exp�−1/	� (3)

where 	 = VN�E�.
If the function N�E� has the corresponding singularity

at E = EF, it will be related to the van Hove singularity.
In the two-dimensional case, the presence of a logarithmic
singularity of the density of states on the Brillouin zone
boundary is possible:

N�E� ∼ ln

∣∣∣∣ D

E−EF

∣∣∣∣ (4)

where D is the characteristic energy cutoff. Then Tc has
the form:

Tc ∼ D exp�−1/
√

	� (5)

We note that, in connection with the quasi-two-
dimensionality of lattices of HTSC, the hypothesis of any-
onic superconductivity is of a certain interest (Fig. 7).
Anyons are quasiparticles with intermediate statistics
(between the Bose- and Fermi-statistics) which can exist
just in two-dimensional structures. The term “anyon” was

introduced by Wilczek in the framework of the conception
of supersymmetry.

4.6. Plasmon Mechanism of Pairing
Many works are devoted to attempts to explain the high-
temperature superconductivity on the basis of the idea of
the pairing as a result of the exchange by quanta of longi-
tudinal plasma waves-plasmons.
Longitudinal plasma waves are formed in solids in the

region of frequencies, at which the dielectric permeability
of the medium becomes zero. The characteristic frequency
of plasma waves in 3D crystals is defined by the formula


̃p = 4�e2N/m (6)

where N is the concentration of electrons, and e and m are
their charge and mass, respectively. At the electron density
N ∼ �1–3�×1022 cm−3, the plasma frequency 
̃p ∼ 1015–
1016. We might assume that the exchange by plasmons,
rather than by phonons, would induce an increase of the
pre-exponential factor in the formula deduced in the BCS
theory,

Tc = � exp
(

1
	−�∗

)
(7)

by two-three orders, if � = �
̃p/kB. However, such an
increase does not cause a significant growth of Tc, because
the plasmons at the frequency 
̃p which is close to the
frequency of electrons, EF/�, cannot cause the supercon-
ducting pairing and their role is important only for the
dielectric properties of crystals.8

4.7. Bipolaronic Mechanism of Superconductivity
One of the attempts to explain the phenomenon of high-
temperature superconductivity was named the bipolaronic
theory. Bipolarons are Bose-particles like the ordinary
Cooper’s pairs.
In the theory of bipolarons, the superconductivity is

caused by the superfluidity of the Bose-condensate of
bipolarons.
The ideas of polarons and bipolarons were used

by Aleksandrov and Ranninger21 to clarify the high-
temperature superconductivity.
The idea of a polaron is based on the assumption about

the autolocalization of an electron in the ion crystal due
to its interaction with longitudinal optical vibrations under
the local polarization which is caused by the electron itself.
The electron is confined in the local polarization-induced
potential well and conserves it by the own field. The idea
of the autolocalization of electrons in ion crystals was
intensively developed by Pekar.22

The efficiency of the interaction of an electron with
mass m and charge e with long-wave longitudinal optical
vibrations with frequency � in the medium is character-
ized by the dimensionless parameter

g = e2


̃

√
m/2��2 (8)
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introduced by Fröhlich. Here, 
̃—the dielectric permeabil-
ity of the inertial polarization. The interaction is assumed
to be small if g < 1. Due to a high frequency �, the defor-
mation field is a faster subsystem. Therefore, it has time
to follow the movement of an electron. This field accom-
panies the movement of the electron in the form of a weak
cloud of phonons. The energy of interaction of the field
and the electron is proportional to the first degree of g.
In the BCS theory, the pairing of conduction electrons is

realized due to the interaction with acoustic phonons and is
characterized by the dimensionless constant of interaction

	 = VN�EF� (9)

where N�Ef �—the density of energy states of electrons
on the Fermi surface, and the quantity V is inversely pro-
portional to the coefficient of elasticity of a crystal.
In the bipolaronic model, we have the parameter

	∗ = �2	2
��z−Vc�/D (10)

where 	 is defined by relation 9, z—the number of the
nearest neighbors, D—the width of the conduction band
of free quasiparticles.
A bipolaron, like a Cooper’s pair, has charge 2e, and its

effective mass is determined by the formula

m̃ ≈ m
�
D

exp�	2� (11)

The effective mass m̃ can be very high and can excess
the mass of a free quasiparticle in the conduction band by
several orders.
To calculate the superconducting transition tempera-

ture Tc which corresponds to the Bose-condensation, the
authors applied the formula for the ideal Bose-gas

kBTc = 3�31�2N 2/3/m̃ (12)

At m̃ = 100 and N = 1021 cm−3, the last formula yields
Tc ∼ 28 K.
Analogously to the bipolaronic model, the bisoliton

mechanism of high-temperature superconductivity was
proposed in Refs. [9, 10].

5. THE SYMMETRY OF PAIRING IN
CUPRATE SUPERCONDUCTORS

Of great importance for high-temperature superconductors
is the pairing symmetry or the symmetry of the order
parameter. This question was considered at many con-
ferences and seminars over the world. Several NATO-
seminars and conferences on this trend which hold in
Ukraine in the town of Yalta were organized by one of the
authors of this review.23–26

The development of the microscopic theory of super-
conductivity was followed by the interest in the question
about the nontrivial superconductivity corresponding to the
Cooper’s pairing with nonzero orbital moment.
The system, in which the nontrivial pairing was first

discovered, is He3. To explain this phenomenon, it was

necessary to introduce a supplementing mechanism of
pairing due to spin fluctuations.

5.1. Superconductor’s Order Parameter
Most physical properties depend on the properties of the
symmetry of a superconductor’s order parameter which is
defined by the formula

����k� = �a�ka�−k�	 (13)

The problem of pairing symmetry is the problem of
the pairing of charged fermions into states with the final
orbital moment.
As usual, both the standard pairing called the s-pairing

and the nonstandard d-pairing are considered. They differ
by the orbital moment of the pair: in the first and second
cases, the moments are L = 0 and L = 2, respectively.
We note also that the continuous symmetry group in

crystals is broken, and it is necessary to speak not about
the orbital moment, but about the irreducible representa-
tions, by which the order parameter is classified. We will
consider this question in the following subsection.
Usually, the standard pairing frequently called the

s-pairing and the nonstandard pairing are distinguished.
At the nonstandard pairing, the symmetry of the order
parameter is lower than the symmetry of a crystal.
For a two-dimensional tetragonal crystal (square lat-

tices), the possible symmetries of the superconductor’s
order parameter were enumerated by Sigrist and Rice27 on
the basis of the theory of group representations. The basis
functions of relevant irreducible representations define the
possible dependence of the order parameter on the wave
vector.
It is worth noting that the anisotropic pairing with the

orbital moment L= 2, i.e., dx2−y2� has the following func-
tional form in the k space:

��k� = �o�cos�kxa�− cos�kya�� (14)

where �o is the maximum value of the gap, and a is
the lattice constant. The gap is strongly anisotropic along
direction (110) in the k space. In this case, the order
parameter sign is changed in the directions along kx

and ky .
Together with the d-symmetry, it is worth to consider

also the s-symmetry, for which we can choose two collec-
tions of basis functions:

��k� = �o (15)

The anisotropic s-pairing is considered as well. This form
of the pairing is analyzed in works by Anderson19 with
co-workers who have studied the mechanism of pairing
on the basis of the tunneling of electrons between layers.
In these states, the order parameter sign is invariable, and
its amplitude is varied along direction (110):

�anisotropic s���k�=�o�cos�kxa�−cos�kya��
4+�1 (16)
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where �1 corresponds to the minimum along direc-
tion (110).
It follows from the symmetry-based reasoning that the

mixed states with various symmetries can be realized.
We mention the states which are mostly in use. The
“extended” s-coupled states were considered in works by
Scalapino.28 A possible functional form of these states is
as follows:

�extended s wave���k�

= �o��1+�2��cos�kxa�− cos�kya��
2−�2� (17)

They have eight parts with alternating signs and eight
nodes which are split by ±��/2 along direction (110).
Kotliar with co-workers used mixed s+ id states:28

�s+id���k�=�o�
+i�1−
��cos�kxa�−cos�kya��� (18)

Laughlin29 analyzed the mixed states dx2+y2 + idxy on
the basis of the anyonic mechanism of pairing:

�d+ id���k� = �o��1−
��cos�kxa�− cos�kya��

+ i
�2 sin�kxa� sin�kya��� (19)

where 
 is the share of s or dxy states mixed with the
dx2+y2 states, and 
�o is the minimum value of the energy
gap. These mixed states are of interest because they are
not invariant with respect to the inversion in the time. The
value and phase of the superconductor’s order parame-
ter, as functions of the direction in cuprate planes CuO2

are given in Figure 8 for various kinds of the pairing
symmetry.

5.2. Classification of the Superconductor’s
Order Parameter by the Representations
of Symmetry Groups

It should be noted that there is no classification of states
by the orbital moment for crystals.
The general theory of nonstandard pairing has been

developed on the basis of the analysis of point symmetry
groups.
Annett was one of the first who classified superconduct-

ing states by the irreducible representations of groups for
high-temperature superconductors.30 As for superconduc-
tors with heavy fermions, the group analysis was carried
out in Ref. [31].
Of importance is the question whether the symmetry of

the order parameter in HTSC is lower than the symmetry
of the crystal lattice.
The order parameter can be represented as a linear

combination
�k =

∑
��i

f�i
�k� (20)

where ��i
—the irreducible representation of groups, by

which the order parameter is transformed, f�i
�k�—

basis functions of the irreducible representation, A1g

Fig. 8. Kinds of pairing symmetries which are considered for high-
temperature superconductors.

corresponds to the anisotropic ssymmetry, and B1g corre-
sponds to the d pairing.
An analogous decomposition of the superconducting

order parameter was performed for a superconductor with
heavy fermions

UPt3

The symmetric states of the system can be presented by
the indication of all possible subgroups of the full group,
relative to which the order parameter is invariant.32 The
full symmetry group of a crystal includes a point symme-
try group G, operations of inversion of the time R, and
the group of calibration transformations U�1�. That is, we
have the following partition into subgroups:

G×R×U�1� (21)
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The La- and Y-based superconductors which have the
tetragonal symmetry of crystal lattices, i.e., G = D4h =
D4×I ,24 are most studied. In the Y-based compounds, one
observes small orthorhombic distortions of a crystal lattice.
Group D4h includes the operations of rotations Cn,

around the z axis by angles of �n/2 and rotations Un by
angles of �:

x cos��n/2�+y cos��n/2� (22)

where n = 0� 1� 2� 3 have 5 reducible representations:
four one-dimensional (A1g , A2g , B1g , B2g) and one two-
dimensional (E).

6. EXPERIMENTAL STUDIES OF A
SYMMETRY OF THE
SUPERCONDUCTING ORDER
PARAMETER

At the present time, the results of three groups of exper-
iments, in which the symmetry of the order parameter is
revealed, are available.
The first group joins different low-temperature charac-

teristics of superconductors such as the Knight shift, the
rate of relaxation in NMR, the temperature dependence of
the heat capacity, the penetration depth, etc.
If the superconductor’s order parameter has zeros on

different areas of the Fermi surface (as in the case of the
dx2−y2 -symmetry), the mentioned quantities will have the
power temperature dependence, rather than the exponential
one.
The second group of experiments is based on the direct

measurement of the phase of the order parameter with the
help of interference phenomena on Josephson junctions in
a magnetic field.
The third group deals with the direct measurements of

a value of the gap by means of spectroscopic experiments.
Here, the most interesting results are presented by pho-
toemission spectroscopy with angle resolution, and Raman
and neutron spectroscopies.

6.1. Measurements of the Josephson Tunnel Current
The most definite information about a symmetry of
the superconducting order parameter can be obtained
from the studies of the phase of the order parameter, in
which the critical current in Josephson junctions positioned
in a magnetic field is measured. The critical current for a
rectangular Josephson junction oscillates with the field by
the Fraunhofer diffraction law:

Ic��� = J0A
sin���/�0�

��/�0

(23)

where �—the magnetic flux through the junction, �0—the
quantum flux, J0—the density of the critical current in the
zero field, and A—the junction area. A diffraction pattern
is shown in Figure 9(a). Let us consider the superconductor

Fig. 9. Critical current in a Josephson junction versus the applied mag-
netic field: (a) standard tunnel contact, (b) corner tunnel junction for a
superconductor with the s-symmetry of the order parameter, (c) corner
tunnel junction for a superconductor with the d-symmetry of the order
parameter.33

YBCO which possesses the tetragonal symmetry. Let its
axis be oriented normally to the plane of the figure, and
let its edges be perpendicular to the axes � and � of the
base plane. In the tunnel junction with corner geometry,
another superconductor is applied to both edges which are
perpendicular to � and � and, moreover, are joined with
each other (Figs. 9(b) and (c)).
This experiment can be compared with that involving a

two-junction SQUID, in which there occurs a superposi-
tion of tunnel currents produced by electrons with wave
vectors kx and ky , so that the resulting diffraction pat-
tern depends on the symmetry of the order parameter of a
superconductor under study. At the s-symmetry, the order
parameter on both edges of the corner junction is the same,
and the resulting diffraction pattern will be such as that in
the case of the standard junction. But, in the case of the
d-symmetry, the order parameter on the corner junction
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Fig. 10. Critical current as a function of the magnetic field in a Joseph-
son junction YBCO–Au–Pb in two geometries: (a) standard and (b) cor-
ner ones.33

edges has different signs, and this fact changes basically
the diffraction pattern.
The total current is illustrated in Figure 10(c). In the

zero field, the critical current turns out to be zero due to
the mutual compensation of its two components.
In the symmetric contact, the dependence on the field is

determined by the formula33

Ic��� = J0A
sin2���/2�0�

��/2�0

(24)

corresponding to the pattern in Figure 10(c).
Thus, by the difference of a diffraction pattern from

both the standard one and that corresponding to the corner
Josephson junction, we can judge about a symmetry of the
order parameter. In work,33 a similar experiment was car-
ried out on the tunnel junction YBCO–Au–Pb. The results
presented in Figure 10 testify to the d-symmetry of the
order parameter in superconducting YBCO.
All the above-mentioned experiments with Josephson

junctions were performed with a single crystal
YBa2Cu3O6.

6.2. Measurements of the Quantization of a Flow by
the Technique of Three-Crystal Unit
Another type of experiments on the determination of
a symmetry of the order parameter is based on the

Fig. 11. Scheme of the experiment on the measurement of a half-integer
number of quanta of the flow captured by a superconducting ring with
three Josephson junctions with the d-symmetry of the order parameter.34

measurement of a flow quantum in a superconducting ring
fabricated from three superconducting single crystals of
yttrium with different orientations.
The idea of such an experiment is based on the theo-

retical result obtained by Sigrist and Rice:27 for supercon-
ductors with the d-symmetry, the tunnel current between
two superconducting crystals separated by a thin bound-
ary depends on the orientation of the order parameter with
respect to the interface. The current between the supercon-
ductors with numbers ij is given by the formula

I ij
s = �Aij cos2�i cos2�j� sin��ij (25)

Here, Aij—the constant which characterizes the junction
of ij , �i, �j—the angles of the crystallographic axes with
the boundary plane, and �ij—the difference of phases
of the order parameters on both sides of the boundary.
It was shown that a spontaneous magnetization, which cor-
responds to the flow equal to a half of �0, appears in
a superconducting ring with a single Josephson junction
with the phase difference �. If the ring has odd number
of �-junctions, the result is the same. The direct measure-
ment of a half-quantum of the flow through such a ring
would testify to the d-symmetry of the order parameter.
The direct measurement of a half-quantum of the flow was
realized in work.34 The scheme of the experiment is shown
in Figure 11.

7. THERMODYNAMICS OF THE d-PAIRING
IN CUPRATE SUPERCONDUCTORS

7.1. Introduction
The basic question of the theory of superconductivity con-
cerns the mechanism ensuring the pairing of electrons.
In the BCS theory, it is the electron–phonon interaction.
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Some recent theoretical models postulate the mechanism
of antiferromagnetic spin fluctuations,35–41 so that the elec-
tron scattering on them can be the reason for the pairing
of electrons. Spin fluctuations play an important role in
superconductors with heavy fermions.38,39 The authors of
works30,31 performed the calculations of a value of the
superconductor gap, the critical temperature, the tempera-
ture dependence of the resistance, and many other quanti-
ties, but the thermodynamics was not considered. For this
reason, it is of interest to calculate the thermodynamics of
antiferromagnetic spin fluctuations, namely the tempera-
ture dependence of the heat capacity, its jump near Tc, and
the parameter R = �C/��Tc� equal to 1.42 by the BCS
theory.
The purpose of this section is the calculation of the

thermodynamics of antiferromagnetic spin fluctuations,
namely the electron heat capacity and the jump of the heat
capacity.
The thermodynamics of superconductors at low temper-

atures is determined by the excitation of two quasipar-
ticles. In the traditional superconductors with pairing of
the BCS-type, the energy gap is isotropic (s-pairing), and
the temperature dependence of the heat capacity has the
exponential form ∼ exp−�/kBT , where � is the supercon-
ductor’s gap. In the superconductors with the anisotropic
pairing, the temperature dependence of the heat capac-
ity has a power character, namely, T n. The appearance of
such temperature dependences is related to the fact that
the superconductor’s gap has zeros on the Fermi surface.
As was noted above, the anisotropic pairing with the

orbital moment L = 2� i.e., with the dx2−y2 -symmetry, has
the following functional form in the k space:

��k� = �o�cos�kxa�− cos�kya�� (26)

where �o is the maximum value of the gap, and a is the
lattice constant.
The gap is strongly anisotropic in direction (110) in the

k space, and the sign of the order parameter is changed
along the directions kx and ky .
The main results of this section are published in works

Refs. [42, 43, 44, 45].

7.2. Antiferromagnetic Spin Fluctuations in
High-Temperature Superconductors

For the first time, the idea of the possibility for the elec-
tron pairing through spin fluctuations was advanced by
Akhiezer and Pomeranchuk.45 They showed that the indi-
rect interaction of electrons through spin waves in a fer-
romagnetic metal has the character of attraction in the
triplet state and, hence, can lead to the triplet pairing.
Consider some experiments and facts on antiferromagnetic
spin fluctuations.
The basis for the hypothesis on the spin-fluctuation

mechanism of pairing consists in the fact that the stoichio-
metric compounds La2CuO4 and YBa2Cu3O6 are antiferro-
magnetic dielectrics. The doping of superconductors leads

to the appearance of the metallic state and superconduc-
tivity. The closeness of high-temperature superconductors
to the antiferromagnetic transition with the wave vector
Q = ��/a��/a� defines the important role of spin fluctu-
ations, the interaction with which forms the quasiparticle
spectrum of electrons and can simultaneously cause the
Cooper’s pairing.
High-temperature superconductors are referred to the

class of strongly correlated systems which are theoreti-
cally studied in the frame of the Hubbard model. This
model describes the hops of electrons in the lattice with
the matrix element t for the nearest neighbors with regard
for the Coulomb repulsion U , when the electrons are
positioned at the same site. The model is set by the
Hamiltonian

H =−t
∑
i�j��

C†
i�Cj� +U

∑
i�

ni↑ni↓ (27)

where C†
i��Cj��—the operator of creation (annihilation) of

an electron at the site i with spin � , and ni↑ = C†
i�Cj�—

the number of electrons at the site. In the given region of
the parameters t, U , and n (the electron concentration),
the appearance of magnetically ordered phases is possible.
Near the boundary of the existence of such a phase from
the side of the paramagnetic region, strong fluctuations
of the magnetic order parameter, paramagnons, must be
manifested.
In the two-dimensional system of CuO layers in cuprate

superconductors, the electron spectrum is presented by the
formula


�t� =−2t coskxa+ coskya (28)

and the chemical potential � is determined by the given
electron concentration n. On the half-filling (n = 1), this
spectrum has the nesting at the wave vector q =Q, which
induces a sharp peak in the spin susceptibility near this
point. This means an instability of the system relative to
the formation of the antiferromagnetic state with the wave
vector Q and the intensification of spin fluctuations near
the point of the magnetic phase transition.
Near the half-filling, when the system is really antiferro-

magnetically unstable, the numerical calculations indicate
that the superconducting order parameter has d-symmetry,
i.e., the gap depends on the wave vector by relation 26.
Gap 26 is an alternating function of the wave vector

(Fig. 12) and has zero values on the diagonals.
Figure 12 shows that the wave function of a Cooper’s

pair is equal to zero just on the diagonals of the square.
Therefore, the repulsive interaction on these diagonals
does not act on the pair, and a Cooper’s pair with the
d-symmetry survives even at large values of U . The super-
conductors with the d-pairing should have a number of
particular properties which can be observed in exper-
iments. Many of these peculiarities are related to the
zeros of the order parameter. The quasiparticle spectrum
at low temperatures must give the power contribution to
the thermodynamic properties, such as the heat capacity,
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Fig. 12. Distribution of signs of the gap function in the limits of the
Brillouin first band.

parameters of NMR, and the penetration depth of a mag-
netic field, rather than the exponential one as in ordinary
isotropic superconductors.
The observation of such power contributions will indi-

cate the presence of a nontrivial order parameter with zeros
on the Fermi surface. The totality of experimental data
for various high-temperature superconductors indicates the
certain realization of the anisotropic order parameter in
them and, with a high probability, with the d-symmetry.
The last circumstances present the important argument
in favor of the spin-fluctuation mechanisms of high-
temperature superconductors. One of them is intensely
developed by Pines and his co-workers35,37 who used
a phenomenological form of the magnetic susceptibility
with the parameters determined from the experiments on
cuprates.
Let us consider this model in more details.
We introduce a Hamiltonian which involves antiferro-

magnetic spin fluctuations, as it was made in works by
Pines:35,36

H = H0+Hint (29)

where H0—Hamiltonian of free electrons. The interaction
is described by the Hamiltonian

Hint =
1
�

∑
q

g�q�s�q�S�−q� (30)

where �—the cell volume, g�q�—the interaction constant;

s�q� = 1
2

∑
����k

�+
k+q����k� (31)

—operator of spin density; ���—Pauli matrix; �+
k+q��—

operator of creation of an electron with the momentum
k+q and the spin projection �; �k�— operator of creation
of a hole with the momentum k and the spin projection
�; S�−q�—operator of spin fluctuations, whose properties
are set by the correlator ��q�
�,35, 36 �ij�n�m� is the spin

susceptibility which is modeled by

��q�
� = �Q

1+�2�q−Q�2− i
/
SF

(32)

qx > 0� qy > 0

where �Q is the static spin susceptibility with the wave
vector Q = ��/a��/a�, � is the temperature-dependent
antiferromagnetic correlation length, and 
SF is the char-
acteristic frequency of spin fluctuations of the param-
agnon energy. All parameters are taken from experiments,
including the data from NMR studies.35 In this case, the
interaction constant is a free parameter of the theory. It
can be determined, by calculating some quantity with the
help of the Hamiltonian and by comparing the result with
experiments.
We now define the quantities �Q and 
SF as

�Q = �0��/a�
2�1/2 (33)


SF = �/����/a�2�1/2� (34)

where �0—the experimentally measured long-wave limit
of the spin susceptibility, �=�2� and �—the energy con-
stant. The NMR data for the compounds yield ��Tc� =
2�3a�
SF = 8 meV, � = 0�4 meV.
It is foreseen that the phenomenological Hamiltonian

will give a self-consistent description of the spin dynam-
ics of the system in the sense that the spin susceptibility
calculated with its help (through the characteristics of a
quasiparticle spectrum which themselves depend on the
susceptibility) will agree with values determined by for-
mula (32).

7.3. Continual Model of Antiferromagnetic
Spin Fluctuations

The authors of works42–45 proposed a continual model for
the spin-fluctuation mechanism of pairing which allows
one to efficiently solve the problem of thermodynamics for
this mechanism.
Let us consider this model in more details.
We now calculate the thermodynamics which is set

by the Pines spin-fluctuation Hamiltonian. We write the
Hamiltonian in the lattice representation

H = H0+Hint (35)

H =−t
∑
n�p

�+
� �n����n+p�+ 1

2

∑
n�m

Si�n��
−1
ij �n�m�Sj�m�

+g
∑
n

�+
� �n�

(
�i

2

)
��

���n�Si�n� (36)

H0 =−t
∑
n�p

�+
� �n����n+p�

+ 1
2

∑
n�m

Si�n��
−1
ij �n�m�Sj�m� (37)

Hint = g
∑
n

�+
� �n�

(
�i

2

)
��

���n�Si�n� (38)
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where the sum is taken over all the sites of the infinite
lattice (the lattice constant is equal to a), �—the unit vec-
tor joining the neighboring sites, Si—the spin operator,
N =∑

n �
+
� �n����n�—the operator of the number of par-

ticles, t—the half-width of the conduction band,35,36 and
�ij�n�m�—the spin correlation function.
It is necessary to calculate the grand partition function

exp�−�������g�� ≡ Tr exp�−��H −�N�� (39)

� = 1/kT

where �—the chemical potential; g—the coupling con-
stant; and ������q�—the thermodynamic potential.
It is convenient to use the formalism of continual inte-

gration for a system of Fermi-particles. The method of
functional integration, i.e., the integration in the space
of functions, was proposed by Wiener in 1925, but the
physicist-theorists paid no attention to this method. Con-
tinual integrals were introduced in physics by Feynman46

in the 1940s and were used for the reformulation of quan-
tum mechanics. The continual integration is one of the
most powerful methods of the contemporary theoretical
physics which allows one to simplify, accelerate, and clar-
ify the process of analytic calculations. The application of
the method of continual integration to a system with infi-
nite number of degrees of freedom allows one to develop,
in such a way, the diagram theory of perturbations.
The grand partition function can be written in the form

of a continual integral:47

exp−�� = N
∫ ∏

n

dSi�n�d�
+
� �n� ��d���n� ��

× exp
{
−
∫ �

0
d�L���

}
(40)

where

L��� =∑
n

�+
� �n� ��

(
�

��
−�

)
���n� ��

− t
∑
n�p

�+
� �n� �����n+p� ��

+g
∑
n

�+
� �n� ��

(
�i

2

)
���

���n� ��Si�n� ��

+ 1
2

∑
n�m

Si�n� ���
−1
ij �n�m� ��Sj�m� �� (41)

where L���—the Lagrangian of the system, and N—the
normalizing factor,

N−1 =
∫ ∏

n

dSi�n�d�
+
� �n� ��d���n� ��

× exp
{
−
∫ �

0
d�L���� = g = 0�

}
(42)

We will use the matrix formalism to construct the theory
of perturbations for the Green functions. It is convenient

to introduce a four-component bispinor (Majorana)

� =
(

�
−�2�

∗

)
� � =

(
�1

�2

)
(43)

where �1—Pauli spin matrices. The Majorana spinor is a
Weyl spinor written in the four-component form.
Now, we can write L in the form

L = 1
2

∑
n�p

� �n���
[(

� 0 �

��
−� 0�5�

)∧
�−t��−∧

��� 0�5

]
(44)

×��n+p���+ g

4

∑
n

� �n���� i�5��n���Si�n���

+ 1
2

∑
n�m

Si�n����
−1
ij �n�m���Sj�m��� (45)

where

� 0 =
(
0 I
I 0

)
� � i =

(
0 −�i

�i 0

)
� I =

(
1 0
0 1

)
(46)

where � i are the Dirac gamma matrices, �̄ ≡ �+� 0, �̂ =
�n�n+p, and � i are given in the chiral representation.
There exists the connection between � and �̄ :

� = C�̄ T , where C is the matrix of charge conjugation,
C = � 0� 2, CT =−C. In terms of � , the partition function
takes the form

e−�� = N
∫ ∏

ndSi�n� ��d��n� ��e−
∫ �
0 d�L��� (47)

We now use the method of bilocal operators48 to
calculate the grand partition function. In this way, we
obtain the Schwinger–Dyson equation and the equation of
free energy. The details of calculations can be found in
Refs. [42–45].
In order to calculate �, we introduce a source of the

bilocal operator48

e−���J � = N
∫

dSd�e−
∫ �

0
d�

[
L���+ 1

2

∑
n�m

∫ �

0
�̄ �n� ��

× J �m�n� �� � ′���m� � ′�
]

(48)

The full Green fermion function is determined by the
formula

Gnm�J � = e���J �
∫

dS d� ��n� ���̄ �m�� ′� exp�� � ��

= �0�T��n� ���̄ �m�� ′��0	 (49)

Let us write the Schwinger–Dyson equation for the
Green function G, by using the method of bilocal
operator:45

�F

�G
= 0 (50)

F �G� = ���J = 0� (51)

First, we consider the case of a free system. By integrat-
ing over the fermion fields in the functional integral, we
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obtain

F0 = ���J �

= −1
2
Tr Ln�G−1

0 −� 0�5�+ J �+ 1
2
Tr LnG−1

0 (52)

G0 =
[
� 0 �

��
− t�1− �̂�� 0�5

]−1

(53)

For the interacting system, the free energy takes the
form

F = F0+Fint (54)

We represent Fint as a series in g: Fint =
∑

n=1�g
2�Fn� In

the lowest order in g, we get the relation

F1 =− g2

32
Tr�� iGTr�jG−2G�iG�j��ij (55)

where the Green function for fermions and spins is as
follows:

���x� ���̄ �y� � ′�	 = G�x� � y� � ′�

�Si�x� ��Sj�y� �
′�	 = �ij�x� � y� �

′�
(56)

Taking the condition �F /�G = 0 into account, we
obtain the Schwinger–Dyson equation

G−1 = G−1
0 −� 0�5�+ g2

12
�� iTr�jG�ij −2� iG�j�ij� (57)

where �0 and � i—Dirac matrices (Fig. 13).
Here, the continuous line corresponds to the Green

function for fermions G, and the wavy line does to the
Green function for spins �i�j �= �ij��� The equation for
free energy

F1 =− g2

32
Tr�� iGTr�jG−2G�iG�j��ij (58)

where G and �ij are, respectively, the Green fermion and
spin functions, corresponds to the contribution of two vac-
uum diagrams (Fig. 14).

7.4. Equation for Superconducting Gap
From Eq. (57), it is easy to deduce the equation for a gap
which can be found in Ref. [36]. By executing the Fourier
transformation

G�x� �� =
�∑

n=−�

∫ �/a

−�/a

d2k

�2��2
G�k�
n�e

i
n�−ikx

×

⎧⎪⎨⎪⎩

n =

�2n+1��
�

for fermions,


n =
2n�
�

for bosons,

Fig. 13. Graphical form of Eq. (57).

we rewrite Eq. (57) in the momentum space as

G−1�k� i
n� = G̃−1
0 �k� i
n�+

g2

4�

�∑
m=−�

∫ �/a

−�/a

d2p

�2��2

× �� i�5Tr �
i�5G�p� i
m�

−2� i�5G�p� i
m�� i�5�

×��k−p� i
n − i
m� (59)

where we set �ij = �ij�,

G−1
0 �k� i
n� =

(
0 �i
n − �
�k�−���I

�i
n +
�k�−��I 0

)
= � 0i
n −� 0�5�
�k�−�� (60)


�k� =−2t�coskxa+ coskya� (61)

According to the standard relation of the diagram tech-
nique, we denote the free energy by !�k� i
n�. Then we
have

G−1�k� i
n� = G̃−1
0 �k� i
n�−!�k� i
n� (62)

and Eq. (57) is the equation for !. We write the solution
for ! in the form

! = � 0A+� 0�5B+�+� 0�5�
i�i (63)

(A, B, �, and �i are functions of k and i
n).
By determining the matrix which is inverse to (62), we

get

G�k�i
n�

= � 0�
n−A�−� 0�5�
�k�−�+B�+�+� 0�5

�
n−A�2−�
�k�−�+B�2−�2−�2
i

(64)

Substituting (64) and (63) in (63), we obtain the system
of equations for the functions A�B��� and �i:

A�k� i
n� =
3g2

4�

∑
m

∫ d2p

�2��2
i
n −A�p� i
m�

D�i
m�p�

×��k−p� i
n − i
m� (65)

B�k� i
n� =
3g2

4�

∑
m

∫ d2p

�2��2

�p�−�+B�p� i
m�

D�i
m�p�

×��k−p� i
n − i
m� (66)
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Fig. 14. Graphical form of the right-hand side of Eq. (58).

��k� i
n� =
3g2

4�

∑
m

∫ d2p

�2��2
��p� i
m�

D�i
m�p�

×��k−p� i
n − i
m� (67)

�i�k� i
n� =− g2

4�

∑
m

∫ d2p

�2��2
�i�p� i
m�

D�i
m�p�

×��k−p� i
n − i
m� (68)

where

D�i
m�p� = �
n −A�2− �
�k�−�+B�2 (69)

Equations (67) and (68) correspond, respectively, to the
singlet and triplet pairings. Moreover, the singlet channel
is characterized by the repulsion, whereas the triplet one
by the attraction. Therefore, it is necessary to take the triv-
ial solution, � = 0, of Eq. (67). In the following calcula-
tions, we will neglect the contributions from the functions
A and B, which leads only to the renormalization of the
wave function and the chemical potential, and will study
only Eq. (67). By neglecting �2 in the denominator, we
get the linearized equations for �0 which determine the
critical temperature Tc�
For the correlation function ��q� i
n�, we will use the

dispersion relations

��q� i
n� = − 1
�

∫ �

−�
d
′ Im ��q�
′�

i
n −
′

= − 1
�

[∫ �

0

d
′ Im ��q�
′�
i
n −
′

+
∫ �

0

d
′ Im ��q�−
′�
i
n +
′

]
(70)

In order to sum over m in (70), we consider the contour
C = C1+C2 (Fig. 15).
The following formula for 
n = ��2n+1���/� is valid:

�∑
n=−�

F �i
n� = − �

2�i

∫
C

F �
�d


exp�
+1

= − �

2�i

∫
C

F �
�d


exp−�
+1
(71)

or �∑
n=−�

F �i
n� =− �

2�i

1
2

∫
C
F �
�th

�


2
d
 (72)

Taking into account that Im��q�−
� = −Im��q�
�,
Eq. (70) can be reduced to

��q� i
n�

=− 1
�

∫ �

0
d
′Im��q�
′�

[
1

i
n −
′ −
1

i
n +
′

]
(73)

Fig. 15. Integration contour C = C1+C2.

With the help of formula (72), we can rewrite (67) in
the form

��k�i
n�

= g2

8��2�i�

∫ d2p

�2��2

∫
C
d
F �p�
�

∫ �

0
d
′Im��k−p�
′�

×
[

1
i
n−
−
′ −

1
i
n−
+
′

]
th

�


2
(74)

where

F �p�
� = ��k� i
n�


2− �
�p�−��2

After some calculations and transformations, we get the
general formula for the superconducting parameter:43–45

Re�k�
�

= g2

8

∫ �/a

−�/a

d2p

�2��2

{
th���
�p�−���/2

2�
�p�−��

× �Re��k−p�
− �
�p�−���

+Re��k−p�
+ �
�p�−����Re��p� "�

−2
∫ �

0

d"

�
cth

�"

2
Im��k−p� "�

×
[

�
−"�2− �
�p�−��2−�2

��
−"�2− �
�p�−��2−�2�2+4�
−"�2�2

×Re��p�
−"�

+ �
+"�2− �
�p�−��2−�2

��
+"�2− �
�p�−��2−�2�2+4�
−"�2�2

×Re��p�
+"�

]}
(75)

ReF �p�
+ i��

= Re��p�
�

2− �
�p�−��2−�2

�
2− �
�p�−��2−�2�2+
2�2
(76)

If the superconducting gap depends weakly on the fre-
quency, then ��k�
� � ��k�0�. In this case, we set

18 Rev. Theor. Sci., 2, 1–22, 2014



Kruchinin Physics of High-Tc Superconductors


 = 0 in Eq. (75). Considering the relation Re��q�
� =
Re��q�−
� and making the simple transformations, we
obtain the equation similar to that in Ref. [36]:

��k� = g2

8

∫ �/a

−�/a

d2p

�2��2

{
Re��k−p� 
�p�−��

× th���
�p�−���/2�
�
�p�−��

+2
∫ �

0

d"

�
cth

�"

2
Im��k−p� "�

× �
�p�−��2−"2+�2

��
�p�−��2−"2+�2�2+4"2�2

}
��p� (77)

It is important that our method of calculations yields a
more general equation for the superconducting gap than
that obtained by Pines. Our equation coincides with the
Pines equations after some simplification, which is the test
for our calculations.

7.5. Thermodynamic Potential of
Antiferromagnetic Spin Fluctuations

For the free energy, we have the equation

F �G� = �� =−1
2
Tr� lnGoG

−1+ �G−1
o +�o�5��G−1�

− g2

32
Tr�� iGTr�jG�ij −2G�iG�j�ij� (78)

where G satisfies Eq. (57). We now multiply Eq. (58) by
G and take the trace, Tr. This allow us to obtain

g2

8
Tr�� iGTr�jG�ij −2G�iG�j�ij�

=−Tr��G−1
o +�o�5��G−1� (79)

Using (57), we can rewrite relation (79) for the func-
tional of free energy calculated with the use of solutions
of the Schwinger–Dyson equation in the form

�� =−1
2
Tr
[
lnGo�

−1+ 1
2
�G−1

o +�o�5��G− 1
2

]
(80)

By implementing the Fourier transformation, we get

� = 1
2�

V
�∑

n=−�

∫ �/a

−�/a

d2k

�2��2
Tr
[
lnGo�k� iwn�G

−1�k� iwn�

+ 1
2
�G−1

o �k� iwn�+�o�5��G�k� iwn�−
1
2

]
(81)

where V is the two-dimensional volume (the area of the
cuprate plane), and Tr stands for the trace of a matrix.
For the free energy functional ����, we have the

formula

� =− V

2�

�∑
n=−�

∫ d2k

�2∗��2
Tr
[
lnGo�k� i
n�

−1�k� i
n�

+ 1
2
�G−1

o �k� i
n�+ ror5��G�k� i
n�−
1
2

]
(82)

where G−1
o �k� i
n� = roi
n − ror5
�k�, and G�k� i
n�

is given by formula (57). We note that the functional
������ is normalized so that ��� = 0� � = 0� = 0.
By calculating the trace of the r-matrix, we obtain the

expression

������ =−V

�

�∑
n=−�

∫ d2k

�2∗��2

[
ln


2
n + �
−��2+�2


2
n +
2

−

− �2


2
n + �
−��2+�2

]
(83)

By using the formula

�∑
n=−�

ln

2

n +b2


2
n +a2

=
∫ �

0
dx

[
�

2
√

a2+x
th

�
√

a2+x

2
− �

2
√

b2+x
th

�
√

b2+x

2

]
= 2 ln

ch��b/2�
ch��a/2�

(84)

we get the equation for the thermodynamic potential:

���� = V
∫ d2k

�2��2

{
− 2

�
ln

ch��/2�
√

�
−��2+�2

ch��
/2�

+ �2

2
√

�
−��2+�2
th

�
√

�
−��2+�2

2

}
(85)

By making some transformations and calculating the
traces of � matrices, we arrive at the equation

����−��0� = V

2

∫
C

dw

2�i

∫ d2k

�2��2
�4

i �k�w�

× 1
eBw +1

1
�w2− �
�k−��2�2

(86)

By expanding the contour C and calculating the contri-
bution to the integral at poles w =±�
�k�−��, we get

����−��0� = V

8

∫ d2k

�2��2
�4

i �k�
�
�k�−��2

×
{
�

2

(
1− th2

��
�k�−��

2

)
− 1

�
�k�−��
th

�
�k�−��

2

}
(87)

where 
�k� describes the spectrum of two-dimensional
electrons, the free energy F is connected with the ther-
modynamic potential � by the relation F = ��; ����
and ��0� are the thermodynamic potentials at T < Tc and
T > Tc, respectively; and V is the two-dimensional volume
(the area of a cuprate layer).
It is easy to verify that, despite the presence of the fac-

tors �
�k�−�� in the denominator in formula (87), no
singularity on the Fermi surface 
�k�−� is present.
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Equations (85) and (87) (at T ∼ Tc) can be a basis for
calculations of various thermodynamic quantities, includ-
ing a jump of the heat capacity.
A similar method of calculations was developed by

St. Weinberg.49

7.6. Heat Capacity of the d-Pairing
Equation (85) yields the following formula for the thermo-
dynamic potential ����:43

���� = V
∫ d2k

�2��2

{
− 2

�
ln
ch��/2��

√
�
�k�−��2+��k�2�
ch��
/2�

+ ��k�2

2
√

�
�k�−��2+��k�2

×th

√
�
�k�−��2+��k�2

2

}
(88)

Here, V is the two-dimensional volume (the area of a
cuprate layer), ��k� is the superconductor gap, k is the
momentum of an electron, and 
�k� = −2t�cos�kxa�+
cos�kya�� gives the spectrum of two-dimensional elec-
trons. The heat capacity is calculated by the formula

C =−T
�2�

�T 2
(89)

The results of calculations of the heat capacity C are
given in work.45 We have carried out the computer-
based calculations of the heat capacity of the compound
YBa2Cu3O6�63. The equation for the superconductor gap �
was obtained in Subsection 7.5.
The task of solving the integral equation was reduced

to that of an algebraic equation which was solved by the
method of iterations. The equation for the superconductor
gap depends on the spin correlation function. For it, the
necessary data were taken from works Refs. [35, 36]. In
calculations, we used the following values of parameters of
the correlator: 
SF�TC�≈ 7�7 meV, �S�Q�= 44 eV, �/a≈
2�5, t = 2 eV, � = 0�25, Tc = 95 K.

We chose such a value of the constant g which satis-
fies the relation 2�/kTc = 3�4 like that in works Refs. [32,
33]. The results of numerical calculations are presented in
Figure 15, where we can see the temperature dependence
of the electron heat capacity: (1)—the curve which is an
approximation of the results of computer-based calcula-
tions (crosses); (2)—the curve which describes the expo-
nential BCS dependence. These results are in good agree-
ment with experiments made by the group of Kapitulnik50

at low temperatures.
The calculations showed a square dependence of the

heat capacity on the temperature in the temperature range
from zero to the superconducting temperature. It was
shown,43–46 that the dependence has the form

C = AT 2 (90)

where A = 0�126 J/K3 mole.

7.7. Heat Capacity Jump in Superconductors
In what follows, we present the results of calculations of
a jump of the heat capacity near the critical temperature,

�C =−T
�2��

�T 2
� � = 1

T
(91)

and evaluate the parameter R = �C/�Tc. Omitting the
awkward and quite complicated details, we will give the
final results.
We obtained R = 1�6. This value of the parameter is

larger than that in the BCS theory, where R = 1�43. It is
worth noting that the heat capacity jump is very sensitive
to the doping. Figure 16 shows the results of recent cal-
culations of one of the authors Ref. [45] for R as a func-
tion of the doping. It is seen that this parameter depends
strongly on the doping. By using these results of calcula-
tions, it is possible to evaluate the condensation energy for
high-temperature superconductors which is proportional to
R2 (see Ref. [51]).
The calculations imply that the heat capacity depend on

the temperature as T 2. Analogous results were obtained
for the physics of heavy fermions.53 It was shown in
this work that d-symmetry leads to a linear dependence
of C/T on the temperature, whereas the s-symmetry is
related to the exponential dependence of this quantity on
the temperature. The linear dependence of C/T on the
temperature was observed in the experimental works52,54–56

for YBaCuO superconductors, The experimental results
are presented in Figure 17. As was mentioned above,
the problem of the determination of the symmetry of a
gap in cuprate superconductors is urgent at the present
time. Many experiments have confirmed the d-symmetry
of the pairing.33,34 In particular, we mention new experi-
ments,34 in which the researchers have studied the quan-
tization of magnetic flows in a ring which includes three

Fig. 16. Temperature dependence of the electron heat capacity, where
(1) —the curve which is an approximation of the results of computer-
based calculations (crosses); (2)—the curve which describes the expo-
nential BCS dependence, points give the experimental data.50
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Fig. 17. Parameter R�Tc� characterizing the heat capacity jump as a
function of the doping for Y0�8Ca0�2Ba2Cu3O7−x . The solid curve presents
the results of theoretical calculations, the points mark the experimental
data.52

Josephson junctions. These works supporting the existence
of d-pairing in high-temperature superconductors were
marked by the Barkley prize. It was also shown that the
sign of the order parameter in YBa2Cu3O7−� depends on
the direction. This dependence corresponds to the dx2−y2 -
symmetry.
The temperature dependence of the electron heat capac-

ity obtained in our calculations43,44 is related to the
d-pairing. These thermodynamic calculations can be a sup-
plementing test in the determination of the pairing sym-
metry in high-temperature superconductors.
It should be noted that the thermodynamic calculations

clarifying the behavior of high-temperature superconduc-
tors have been also performed in Refs. [57, 58, 59, 60] in
the frame of the other mechanisms of pairing.

8. SUMMARY
The high-temperature superconductivity is a dynamical
field of solid-state physics which is intensively developed
by theorists and experimenters. By summarizing the phys-
ical properties and the mechanisms of superconductivity in
new high-temperature superconductors, we should like to
separate the main properties and the theoretical problems
arising in the studies of high-temperature superconductors.
In order to comprehend the nature of the supercon-

ducting state, it is necessary to construct a consistent
microscopic theory which would be able to describe super-
conductive and normal properties of high-temperature
superconductors. It is seen from the above-presented sur-
vey that many mechanisms of pairing in high-temperature
superconductors, which pretend to the explanation of this
phenomenon, have been advanced. On the whole, the
most probable seems to be the “synergetic” mechanism
of pairing, whose constituents are the electron–phonon

interaction, spin-fluctuation, and other types of interaction
in cuprate planes.
We believe that the known challenging properties, which

are contradictory to a certain extent, of many chemical
compounds in the superconducting and normal phases can
be explained only by considering the interaction of all the
degrees of freedom such as lattice-, electron-, and spin-
related ones. In this case, it is also necessary to take the
complicated structure of high-temperature superconductors
into account. The further development of the theory will
require not only the execution of bulky numerical calcu-
lations, but also the solution of a number of fundamental
problems concerning the strong electron correlations.
It seems to us that one of the key problems in the field

of superconductivity is the mechanism and the symmetry
of pairing.
Above, we have shown that some thermodynamical

problems of high-temperature superconductivity, in partic-
ular the problem of antiferromagnetic spin fluctuations,
can be efficiently solved within the method of continual
integrals.
The paper deals with a specific organization form of

matter. Other forms are described for example in the Refs.
[61–63]. In most cases quantum theory is necessary for the
description of the organization forms of matter. But even
the interpretation of modern quantum theory seems still to
be an open question, as is demonstrated in Refs. [64–69].
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