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We investigate two-band superconductivity in ultrasmall grain. The Richardson’s exact solution is extended to
two-band systems, and a new coupled equation is derived according to the procedure of Richardson’s works.
Parity gap and condensation energy of ultrasmall two-band superconducting grain are numerically obtained by
solving the coupled equations. We discuss these properties in ultrasmall grain in relation to the correlation,
interband interaction and size dependence.
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1. INTRODUCTION
Black et al. have revealed the presence of a parity depen-
dent spectroscopic gap in tunnelling spectra of nanosize Al
grains.2,26 Many group have theoretically investigated physical
properties such as critical level spacing, condensation energy,
parity gap, etc. in ultrasmall grain of the conventional super-
conductivity.3,6–9,15,32 The question of such nanosize supercon-
ducting grain has been discussed by Anderson.1 The standard
BCS theory becomes false, when the level spacing approaches
the superconducting gap. To investigate the properties in such
nanosize systems, it is necessary to take more accurate treatment.
Braun and von Delft3,4,7,31 have reintroduced the exact solution
to the reduced BCS Hamiltonian developed by Richardson.27–30

It is noteworthy that the Richardson’s solution is applicable
at distributions of single-electron energy level. Gladioli et al.7

have investigated the pairing characteristics such as condensation
energy, spectroscopic gap, parity gap, etc. by using the Richard-
son’s exact solution for the reduced BCS Hamiltonian.

Recent discovery of superconductivity of MgB2
17 with Tc =

39 K has also been much attracted great interest for elucidation
of its mechanism from both experimental and theoretical view
points. Since this discovery, the possibility of two-band supercon-
ductivity has also been discussed in relation to two gap functions
experimentally and theoretically. Two-band model has been intro-
duced by several groups.10,16,33 Recently, two-band or multi-band
superconductivity has been theoretically investigated in relation
to superconductivity arising from coulomb repulsive interactions
and the possibility of new superconductivity arising from new
mechanisms with higher transition temperature.5,11–14,18–24,34

In this paper, we investigate two-band superconductivity in
ultrasmall grain. The Richardson’s exact solution is extended
to two-band systems, and new coupled equation is derived
according to the procedure of Richardson’s works. Parity gap

and condensation energy of ultrasmall two-band superconduct-
ing grain are numerically given by solving the coupled equation.
We discuss these properties in ultrasmall grain in relation to the
correlation, interband interaction, and size dependence.

2. EXACT SOLUTION FOR TWO-BAND
SUPERCONDUCTIVITY

In this section, we derive an exact solution of two-band super-
conductivity for reduced BCS Hamiltonian.

2.1. Hamiltonian
We consider a Hamiltonian for two bands 1 and 2 written as

H= H1+H2+Hint (1)

where
H1 =

∑
j�

�1ja
†
j�aj� −g1

∑
jk

a†
j↑a

†
j↓ak↓ak↑ (2)

H2 =
∑
j�

�2j b
†
j�bj� −g2

∑
jk

b†
j↑b

†
j↓bk↓bk↑ (3)

Hint = g12
∑
jk

a†
j↑a

†
j↓bk↓bk↑ +g12

∑
jk

b†
j↑b

†
j↓ak↓ak↑ (4)

The first and second terms of Eq. (1) correspond to the reduced
BCS Hamiltonian for bands 1 and 2, respectively. The third term
means a coupling between them and corresponds to the pair scat-
tering process between these two bands (see Fig. 1). a†

j� (aj� )
and b†

j� (bj� ) are the creation (annihilation) operator in band
1 and 2 with spin � and the single-particle levels �1j and �2j ,
respectively. The sums of j and k are over a set of N1 states for
band 1 with fixed width 2��1D and a set of N2 states for band 2
with fixed width 2��2D, respectively.
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Fig. 1. Two band system. The dotted line means the chemical potential.
�nj is the single-particle energy for band n and level j. −g1 and −g2 are
the intra-band pair interaction coupling constants. g12 are the inter-band pair
interaction coupling constant.

In this study, we assume that the Debye energies for two bands
coincide with each other as

�1D = �2D =�D (5)

Within this assumption, N1 and N2 are relatively estimated by the
density of state (DOS) for two bands as

N1

N2
= �1

�2
(6)

where �1 and �2 are DOS for two bands. The interaction con-
stants g1 and g2 can be written as

g1 = d1�1� g2 = d2�2 (7)

respectively, where d1 and d2 mean the mean single-particle level
spacing,

d1 =
2��D

N1−1
� d2 =

2��D

N2−1
(8)

and �1 and �2 are dimensionality interaction parameters for two
bands. We define the inter-band interaction constant as

g12 =
√
d1d2�12 (9)

In summary, we obtain a relation as

�1

�2
≈ N1−1

N2−1
= d2

d1
(10)

The system we are considering consist of two half-filled bands,
each of which has equally spaced Nn single-particle levels and
Mn (= Nn/2) doubly occupied pair levels (n = 1�2). We take
as our unit of energy the single-particle level spacing. Thus, the
single-particle spectrum is given by

�nj = dnj−�D� j = 1�2� � � � �Nn �n= 1�2	 (11)

Richardson had solved for the single band model for arbitrary
set of single-particle levels. For simplicity, we assume that there
are not singly occupied single-particle levels. As can be seen
from Eqs. (2)–(4), these levels are decoupled from the rest of
the system. They are said to be blocked and contribute with their
single-particle energies to the total energy. The above simplifica-
tion implies that every single-particle level j is either empty (i.e.,
�vac�), or occupied by a pair of electrons (i.e., a†

j↑a
†
j↓�vac� and

b†
j↑b

†
j↓�vac�). These are called as unblocked level.

2.2. Exact Solution
In order to extend Richardson’s solution into the two-band sys-
tem, we define two kind of hard-core boson operators as

cj = aj↓aj↑� c†j = a†
j↑a

†
j↓ (12)

dj = bj↓bj↑� d†
j = b†

j↑b
†
j↓ (13)

which satisfy the commutation relations,

c†2j = 0� 
cj � c
†
k�= �jk�1−2c†j cj	� 
c†j cj � c

†
k�= �jkc

†
j (14)

d†2
j = 0� 
dj�d

†
k�= �jk�1−2d†

j dj 	� 
d†
j dj �d

†
k�= �jkd

†
j (15)

which reflect the Pauli principle for the fermions they constructed
from.

The Hamiltonian Eq. (1) for the unblocked levels can be then
written as

HU = 2
N1∑
j

�1j c
†
j cj −g1

N1∑
jk

c†j ck+2
N2∑
j

�2jd
†
j dj −g2

N2∑
jk

d†
j dk

+g12

N1∑
j

N2∑
k

c†j dk+g12

N2∑
j

N1∑
k

d†
j ck (16)

We shall find the eigenstates �M1
M2� of this Hamiltonian with
M1+M2 pairs in the following form as

HU �M1
M2�U = E�M1
M2	�M1
M2�U

=
( M1∑

J=1

E1J +
M2∑
K=1

E2K

)
�M1
M2�U (17)

where E�M1
M2	 is the eigenvalue and

�M1
M2�U =
M1∏
J=1

C†
J

M2∏
K=1

D†
K �vac� (18)

and

C†
J =

N1∑
j

c†j

2�1j −E1J
� D†

J =
N2∑
j

d†
j

2�2j −E2J
(19)

Now, we define C†
0 and D†

0 as

C†
0 =

N1∑
j

c†j � D†
0 =

N2∑
j

d†
j (20)

then, we can rewrite Eq. (16) as

HU = 2
N1∑
j

�1jc
†
j cj −g1C

†
0C0+2

N2∑
j

�2jd
†
j dj −g2D

†
0D0

+g12C
†
0D0+g12D

†
0C0 (21)

The commutation relations for new operators are given as


c†j cj �C
†
J �=

c†j

2�1j −E1J
� 
d†

j dj �D
†
J �=

d†
j

2�2j −E2J
(22)


C0�C
†
J �=

N1∑
j

1−c†j cj

2�1j −E1J
� 
D0�D

†
J �=

N2∑
j

1−d†
j dj

2�2j −E2J
(23)
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HU �C
†
J � = E1J C

†
J +C†

0 +g1C
†
0

N1∑
j

1−c†j cj

2�1j −E1J

+g12D
†
0

N1∑
j

1−c†j cj

2�1j −E1J
(24)

and


HU �D
†
J � = E2JD

†
J +D†

0 +g1D
†
0

N2∑
j

1−d†
j dj

2�2j −E2J

+g12C
†
0

N2∑
j

1−d†
j dj

2�2j −E2J
(25)

Using above commutation relations, we find

HU �M1
M2�U

=
( M1∑

J=1

E1J +
M2∑
K=1

E2K

)
�M1
M2�U +C†

0

M1∑
J=1

×
(
1−

N1∑
j

g1
2�1j−E1J

+
M1∑
J ′ �=J

2g1
E1J ′ −E1J

)
�M1�J 	
M2�U

+D†
0

M1∑
J=1

( N1∑
j

g12
2�1j−E1J

−
M1∑
J ′ �=J

2g12
E1J ′ −E1J

)
�M1�J 	
M2�U

+C†
0

M2∑
K=1

( N2∑
j

g12
2�2j −E2K

−
M2∑

K′ �=K

2g12
E2K′ −E2K

)
�M1
M2�K	�U

+D†
0

M2∑
K=1

(
1−

N2∑
j

g2
2�2j −E2K

+
M2∑

K′ �=K

2g2
E2K′ −E2K

)
�M1
M2�K	�U

(26)

where

�M1�L	
M2�U =
L−1∏
J=1

C†
J

M1∏
J ′=L+1

C†
J ′

M2∏
K=1

D†
K �vac� (27)

and

�M1
M2�L	�U =
M1∏
J=1

C†
J

L−1∏
K=1

D†
K

M2∏
K′=L+1

D†
K′ �vac� (28)

Comparing Eqs. (26) with (17), for arbitrary J and K we obtain

(
C†

0 D†
0

)( 1+g1A1J −g12A2K

−g12A1J 1+g2A2K

)( �M1�J 	
M2�U
�M1
M2�K	�U

)
= 0 (29)

where

AnL =−
Nn∑
j

1
2�nj −EnL

+
Mn∑

L′ �=L

2
EnL′ −EnL

(30)

Non-trivial solution of Eq. (29) is derived from a determinantal
equation;

FJK = �1+g1A1J 	�1+g2A2K	−g212A1JA2K = 0 (31)

This constitutes a set of M1+M2 couples equations for M1+M2

parameters E1J and E2K (J = 1�2� · · · �M1
K = 1�2� · · · �M2),
which may be thought of as self-consistently determined pair
energies. Equation (31) is exact eigenvalue equation for two-band
superconducting system, and can be regarded as a generalization
of the Richardson’s original eigenvalue equation.

2.3. Preprocessing for Numerical Calculation
To remove the divergences from the second term of AnL in
Eq. (30), we make changes of energy variables.

En2� = �n� + i�n�

En2�−1 = �n� − i�n�

� = 1�2� � � � �Mn/2 (32)

where we assume that the number of pairs is even. Since complex
pair energies appear in complex conjugate pairs, the total energy
is kept in real.
A further transformation is necessary in order to remove the

divergences from the first term of AnL. We define new variables
xn� and yn� as

�n� = �n2� +�n2�−1+dnxn� �xn� ≤ 0	 (33)

and

�2
n� =−���2n2� −d2

nx
2
n�	yn� �yn� ≥ 0	 (34)

where

��n2� = �n2�−�n2�−1 (35)

Considering the sign of yn�, we can express �n� as

�n� = ��n��e−i�n�

�n� =
{

0 for ��2n2�−d2
nx

2
n� ≤ 0

�/2 for ��2n2�−d2
nx

2
n� > 0

(36)

Then, we can rewrite FJK by using new variables and define the
result as F��. We extract the real and imaginary parts of F�� as

F +
�� = 1

2
�F��+F ∗

��	= 1+g1R1�+g2R2�

+ �g1g2−g212	R1�R2�

− �g1g2−g212	I1�I2� cos��1�+�2�	

− �g1+ �g1g2−g212	R2��I1� sin�1�

− �g2+ �g1g2−g212	R1��I2� sin�2� (37)

F −
�� = 1

2i
�F��−F ∗

��	=−�g1g2−g212	I1�I2� sin��1�

+�2�	+ �g1 + �g1g2−g212	R2��I1� cos�1�

+ �g2+ �g1g2−g212	R1��I2� cos�2� (38)

where

Rn� = − 2dnxn��1+yn�	

�1−yn�	
2��2n2�− �1+yn�	

2d2
nx

2
n�

+4
Mn∑
��=�

�n����
2
n��+�2

n� +�2
n�	

��2
n�� +�2

n� +�2
n�	

2−4�2
n��

2
n�

−
Nn∑

j �=2�−1�2�

2�n�−�n�
�2�n� −�n�	

2+�2
n�

(39)
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In� =
{

1−y2n�
�1−yn�	

2��2n2�− �1+yn�	
2d2

nx
2
n�

−4yn�
Mn∑
��=�

× �2
n�� −�2

n�+e2n�

��2
n�� +�2

n� +�2
n�	

2−4�2
n��

2
n�

+yn�

Nn∑
n�=2�−1�2�

× 1

�2�n� −�n�	
2+�2

n�

}
×
√∣∣∣∣��2n2� −d2

nx
2
n�

yn�

∣∣∣∣ (40)

and
�n�� = �n�−�n� (41)

Therefore, for arbitrary combination of � and � we must solve
the following equations;

F +
�� = 0

F −
�� = 0 ��= 1�2� � � � �M1/2
 �= 1�2� � � � �M2/2	 (42)

3. RESULTS AND DISCUSSION
We now apply the exact solution for two-band system to discuss
properties of the two-band superconducting in ultrasmall grain.
The single-particle level patterns of �2M1 +m	+ 2M2 electron
system (m= 0�1� and 2) that we are considering are represented
in Figures 2(a)–(c), respectively. The dotted lines mean the chem-
ical potential. d1 and d2 (d1 < d2) are the mean level spacings.
As seen these figures, the additional electrons first occupy the
band 1, then the band 2.

Numerical calculations are carried out under the condition that
N1 � N2 = 3 � 2, ��D = 50, and �1 = �2 = �.

3.1. Pair Energy Level
By minimizing the sum of squares of Eqs. (38) and (39)

F =
M1/2∑
�=1

M2/2∑
�=1

�F +2
�� +F −2

�� 	 (43)

for various interaction parameters, we obtain a behavior of pair
energy levels EnJ of two bands as shown in Figure 3, in which
solid and broken lines are corrspond to the pair energy levels of
the band 1 and the band 2, respectively. Parameters used in this
calculation are N1 = 12, N2 = 8, M1 = 6, M2 = 4, 0 ≤ � ≤ 1�0,
and 0≤ �12 ≤ 0�2.

Fig. 2. Single-particle levels near the Fermi level in a two band supercon-
ductivity. The dotted lines mean the chemical potential. The left and right
bands are band 1 and 2, respectively. d1 and d2 are the mean level spac-
ings. (a) 2M1 +2M2 electron system, where Mn is a number of pair levels.
(b) �2M1 +1�+2M2 electron system. (c) �2M1+2�+2M2 electron system.

Fig. 3. Typical behavior of pair energy levels of two bands for the ground
state. Parameters used in calculation are N1 = 12, N2 = 8, M1 = 6, M2 = 4,
��D = 50, 0 ≤ �1 = �2 ≤ 1�5, and 0 ≤ �12 ≤ 0�3. Solid and broken lines are
corrspond to the pair energy levels of the band 1 and the band 2, respectively.

As seen in the figures, the band 2 condenses into degenerate
levels, but the band 1 does not. In general, we can expect that the
single-particle levels in band of which mean level spacing d is
larger than the other band degenerate faster. The behavior of the
condensing band is qualitatively the same as that for the case of
calculation for the single band.7 The co-existence of the normal
band and the condensed one may be reflected in the opposite
phase of the gaps of these bands.25

3.2. Condensation Energy
The condensation energy of band n for �2M1+m	+2M2 electron
system can be defined as

EC
n �2M1+m�2M2	 = En�2M1 +m�2M2	+

(
Mn+

m

2

)
gn

−E0
n�2M1 +m�2M2	 (44)

where En�2M1+m�2M2	 and E0
n�2M1+m�2M2	 are the ground

state energy and the sum of the single-particle energy, respec-
tively.

We calculate the condensation energies and show in
Figures 4(a) and (b). Parameters used in this calculation are
� = 0�5, and �12 = 0�01 for (a), �12 = 0�1 for (b). Values are

Fig. 4. Condensation energy. Parameters used in calculation are ��D =
50, and �1 = �2 = 0�5. Values are normalized by the bulk gap, �1 =
�D sinh−1��2/��1�2 − �2

12�� or �2 = �D sinh−1��1/��1�2 − �2
12��. The solid

and broken lines correspond to the condensation energy for the band 1
and 2, respectively. Lines plotted by squares, by triangles and by circles
are for 2M1 + 2M2 electron system, for �2M1 + 1�+ 2M2 electron system,
and for �2M1 +2�+2M2 electron system, respectively. (a) The condensation
energy for the interband coupling parameter �12 = 0�01. (b) The condensa-
tion energy for �12 = 0�1.
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normalized by the bulk gap, � = �D sinh−1��/��2 −�2
12		. The

solid and broken lines correspond to the condensation energy
for the band 1 and 2, respectively. Lines plotted by squares, by
triangles and by circles are for 2M1 + 2M2 electron system, for
�2M1+1	+2M2 electron system, and for �2M1+2	+2M2 elec-
tron system, respectively.

As seen in the figures, we can understand that the band 2
condenses, but the band 1 does not because of the sign of val-
ues. This difference of sign may also be reflected in the opposite
phase of the gaps of these bands. The behaviors of the results
for the condensed band (band 2) are qualitatively the same result
as the case of the single band calculation. That of the conden-
sation energy of band 2 for �2M1 + 2	+ 2M2 electron system
is, however, different from the others. We can also see that the
condensation energy is affected by the interband interaction �12.
This is mentioned in our previous work.25

3.3. Parity Gap
The parity gap of band n is defined as

�p
n = En�2M1+1�2M2	

− 1
2
�En�2M1�2M2	+En�2M1+2�2M2	� (45)

which is introduced by Matveev and Larkin and characterizes the
even-odd ground state energy difference.15

We also calculate the parity gaps and shown in Figure 5. The
solid and broken lines correspond to the parity gap for the band 1
and 2, respectively. Lines plotted by triangles and by squares are
for the interband coupling parameter �12 = 0�01 and for �12 =
0�1, respectively. Other parameters used in this calculation are
the same as for the condensation energy. Values are normalized
by the bulk gap.

For the condensed band, we obtain qualitatively the same result
as the case of the single band calculation, i.e. there is a minimal
point and a tendency toward 1 for d→ 0. The mean level spacing
giving the minimal point is, however, much less than that for
the case of calculation for the single band. The parity gap is

Fig. 5. Parity gap. Parameters used in calculation are ��D = 50, and �1 =
�2 = 0�5. The solid and broken lines correspond to the parity gap for the
band 1 and 2, respectively. Lines plotted by triangles and by squares are for
the interband coupling parameter �12 = 0�01 and for �12 = 0�1, respectively.
Values are normalized by the bulk gap.

almost independent upon the interband interaction �12. This is
also mentioned in our previous work.25

4. CONCLUSIONS
We have extended the the Richardson’s exact solution to the two-
band system, and have derived a new coupled equation. To inves-
tigate the properties of the two-band superconductivity, we have
solved the equation numerically, and have given the behavior of
pair energy levels, the condensation energy, and the parity gap.
The band of which mean level spacing is larger than the other

band degenerates and condenses faster. The behavior of the con-
densing band is qualitatively the same as that for the case of
calculation for the single band. The co-existence of the normal
band and the condensed one may be reflected in the opposite
phase of the gaps of these bands. This phase character appears
in every results of numerical calculations. Therefore, the phase
of gap is important to stabilize the two-band superconductivity.
We have also calculated the condensation energy and the parity

gap for two-band superconductivity. The result suggest that the
interband interaction �12 affects on the condensation energy, but
not on the parity gap.
In summary, an expression of Richardson’s exact solution for

two-band superconductivity has been presented, and has been
solved numerically. Then, the behavior of pair energy levels,
the condensation energy, and the parity gap have presented. The
results for the condensed band is almost qualitatively the same as
those for the calculation of single band, and the co-existence of
the normal band and the condensed one may be originated from
the opposite phase of the gaps of these bands.
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