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1. INTRODUCTION
Studies in the field of superconductivity theory is one of
the most bright, fruitful, and promising trends in the the-
oretical physics of condensed matter, since superconduc-
tivity remains to be one of the most interesting research
areas in physics.1–6

The theory of superconductivity seems to be founded on
the London postulate.7 Associated with the gauge transfor-
mation, the conserved current is

j=− i

2
��∗��−���∗�− e���2A (1)

The current due to the first term is called the paramag-
netic current; and that due to the second, the diamagnetic
current. In the superconducting state, the first term on the
right-hand side changes very slightly, and sometimes the
wave function is quite rigid, that only the diamagnetic cur-
rent survives. In this respect, the superconductor is the per-
fect diamagnetic substance. The current is dominated by

j=−k2A (2)

where k is properly chosen positive constant. The Meissner
effect is easily derived from the Ampére’s equation,

� ×B= j (3)

Taking rotation gives

� 2B= k2B (4)
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or
Bx = B0e

−kx (5)

It is important to note that ���2 in Eq. (1) is very large, the
classic scale quantity, so that the magnetic field in Eq. (5)
dumps very rapidly. This is the Meissner effect. We know
similar phenomena, the screening of the Coulomb interac-
tion, or the quark confinement.
The boson model of Cooper pairs is considerably suc-

cessful. Equation (3) yields � 2A= k2A, which is

��A� =−k2A� (6)

suggesting that photon is massive, that is a fundamental
aspect to superconductivity.8

An essentially similar treatment has been presented by
Ginzburg and Landau (GL).9 The superconducting state is
the macroscopic state; in other words, a thermodynamic
phase. They characterized this phase by introducing the
order parameter, � . This looks like the Schrödinger func-
tion � , and then the primitive quantum theorists got con-
fused, saying that behind the Iron Curtain the quantum
theory was different in features from that of the Western
countries.
The theory is handled as the phase transition. The

Lagrangian for the superconducting state is postulated as

Fs = F0+a�� �2+ 1
2

b�� �4+ 1
2m∗

∣∣∣∣
(
−i�� + e∗A

c

)∣∣∣∣
2

+ h2

8�
(7)

where ∗ indicates the quantities in question referred to the
superconductor �×2�. Note that there are −�� �2 and �� �4
terms in the potential parts. These drive the system to
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spontaneous symmetry breaking and lead to a phase tran-
sition for the suitable choice of constants a and b. This
is now called the Higgs mechanism.8 Certainly, the GL
treatment is a few years ahead of the Nambu–Goldstone
suggestion.
The GL theory is known as the macroscopic quantum

mechanism, and in this sense, the big � is sometimes
amusingly called the cat’s � .
A very instructive presentation of the macroscopic quan-

tum theory is found in Feynman lectures on Physics.
Vol. III, Chap. 21. Various topics there, such as the
Josephson junction, are quite readable.
The microscopic theory was prepared by Bardeen,

Cooper and Schrieffer.3 However, as a preliminary discus-
sion, we present the Bogoliubov treatment. The supercon-
ductivity is a kind of many-electron problems. The most
general Hamiltonian should be

H =
∫

dx	+�x�h�x�	�x�

+ 1
2

∫
dx dx′	+�x�	�x�v�x
 x′�	+�x′�	�x′� (8)

Since the algebra of electrons is the spinor, the terms other
than the above identically vanish. In other words, the three-
or four-body interactions are useless. First, we specify the
spin indices, and next the plane-wave representation for
the spatial parts. Equation (8) is simply written as

H = �k�a
+
k +ak�+ vk
−ka

∗
ka

∗
−ka−kak (9)

The simplification or the mean-field approximation for the
two-body part is twofold—say,

�k
−kakak�a+
−k�a+

−k��
�′

k
−ka
+
ka+

k��aka−k��+ c�c� (10)
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The latter looks curious, since such expectation value
�aka−k�� vanishes identically. Against this common
sense, Bogoliubov put the Hamiltonian,

H = �k�a
+
k +ak�+�ka

∗
ka

∗
−k +�∗

ka−kak (11)

We understand that Bogoliubov presumed the Cooper pair,
and provided the effective Hamiltonian for pairs. His the-
ory may be a shorthand treatment of the BCS theory. This
Hamiltonian is diagonalized by the so-called Bogoliubov
transformation which defines the quasiparticle responsible
for the superconductivity as(

�k↑

�+
−k↓

)
=
(

uk −vk

vk uk

)( ck↑

c+
−k↓

)
(12)

with
u2

k − v2
k = 1 (13)

The spirit of the Bogoliubov transformation is to mix oper-
ators ck↑ and c+

−k↓, which are different in spin. The quasi-
particle yields the new ground state, so that the particle
pair or the hole pair arises near the chemical potential.
The stabilization energy thus obtained is called the gap
energy �k.

3
10

We now follow the BCS microscopic treatment. The
Green function has been effectively used by employing the
Nambu spinor. This makes the unified treatment of normal
and superconducting states possible. However, the temper-
ature Green function (Matsubara function) is used from
the beginning.

2. SPINORS
We start with the general many-electron Hamiltonian not
restricted to the BCS Hamiltonian. The BCS state respon-
sible for the superconducting state is easily recognized
from the formal description. The simplest method of the
quantum chemistry should be the Hückel theory. This con-
sists of the single energy matrix,

�rs =
∫

dxh�x��rs�x� (14)

where h�x� is the single-particle quantum mechanical
Hamiltonian and the electron density �rs�x� is given by the
product of the single-particle (atomic) orbitals �r and �s.
Note that this is the spin-less theory.

We then extend the treatment into the spin space,

�rs =
(

�↑↑
rs �↑↓

rs

�↓↑
rs �↓↓

rs

)
(15)

Any 2× 2 matrix is expanded by the Pauli spin matrices
together with the unit matrix,

�0 =
(
1 0
0 1

)

 �3 =

(
1 0
0 −1

)

�1 =
(
0 1
1 0

)

 �2 =

(
0 −i
i 0

) (16)

However we employ other combinations:

�↑ = 1
2

��0+�3� =
(
1 0
0 0

)

�↓ = 1
2

��0−�3� =
(
0 0
0 1

)

�+ = 1
2

��1+ i�2� =
(
0 1
1 0

)

�− = 1
2i

��1− i�2� =
(
0 0
1 0

)
(17)

We then in Eq. (24) have

�rs = ��
rs�

�

��
rs = Tr����rs� (18)

in detail

�↑
rs = �↑↑

rs �↓
rs = �↓↓

rs

�+
rs = �↓↑

rs �−
rs = �↑↓

rs (19)

As to the Pauli matrices, the ordinary commutators are

��i
 �j� = 2i�ijk�
k

��3
 �+� = 2�+

��3
 �−� =−2�−

��+
 �−� = �3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(20)

��↑
 �↓� = 0

��↑
 �+� = �+

��↑
 �−� =−�−
��↓
 �+� =−�+

��↓
 �−� = �−
��+
 �−� = �3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

and the anticommutators are

��i
 �j �+ = 2i�ij

��+
 �−�+ = 1

}
(22)

We then express the matrix in Eq. (15) as

�rs = ��
rs�

�

��
rs = Tr����rs� (23)

in details

�↑
rs = �↑↑

rs �↓
rs = �↓↓

rs

�+
rs = �↓↑

rs �−
rs = �↑↓

rs (24)

Here, if the quantum-mechanical Hamiltonian has the
single-particle character without the external field causing
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a rotation in the spin space, the off-diagonal elements are
meaningless. The Hückel theory involves the spin diagonal
terms.
However, if we take the electron–electron interaction

into account, even in the mean-field approximation, the
off-diagonal elements become meaningful and responsible
for the superconductivity. This is what we investigate here.

2.1. Spinor
The algebra representing electrons is the spinor. The Dirac
relativistic (special relativity) function describes this prop-
erty well. However, the relativity seems not so important
for the present problem. We now concentrate on the spinor
character of the electron. The field operator has two com-
ponents in the spin space:

��x� =
(

�↑�x�

�+
↓ �x�

)

�̄�x� = �+�x��3 = (
�+

↑ �x� �↓�x�
)( 1 0

0 −1

)

= (
�+

↑ �x� −�↓�x�
)

(25)

This is called Nambu representation.11 The negative sign
in front of �↓ is seen in the Dirac conjugate �+ → �̄.
The field operators satisfy, of course, the

anticommutators

���x�
 �+
� �s′��+ = �
���x−x′� (26)

where �
 �� = �↑
↓�, and x = �r
 t�. Then for
spinors (25) the matrix commutator holds:

���x�
�̄�x′��+ =
[(

�↑�x�

�+
↓ �x�

)


(

�+
↑ �x′� −�↓�x′�

)]
+

=
(

��↑�x�
�+
↑ �x′��+ ��↓�x′�
�↑�x��+

��+
↓ �x�
�+

↑ �x′��+ ��↓�x′�
�+
↓ �x��+

)

=
(

��x−x′� 0

0 ��x−x′�

)
(27)

2.2. Noether Theorem and Nambu–Goldstone
Theorem

We seek for the meaning of the Nambu spinor.12 Consider
a global transformation of fields with the constant �:

��x� → ��x�ei�

�+
 �x� → ��x�e−i� (28)

It is recognized that the Hamiltonian and the equation of
motion are invariant under this transformation. We can see
that this transformation is a rotation around the �3 axis
with �:

��x� → ei�3���x� (29)

since

ei�3� = cos��3��+ i sin��3��

= 1− ��3��2

2! + ��3��4

4!
+ · · ·+ i

(
1− ��3��3

3! + ��3��5

5! + · · ·
)

= 1− �2

2! +
�4

4! + · · ·+ i�3

(
1− �3

3! +
�5

5! + · · ·
)

= �0 cos�+ i�3 sin�

(
ei� 0
0 e−i�

)

Here, we discuss briefly the Noether theorem and the
Nambu–Goldstone theorem. The latter makes a profound
investigation possible. If the Lagrangian of the system
in question is invariant under some transformation which
is just the present case, we have the continuity relation.
Notice that the density and the current are, in terms of the
Nambu spinor,

j0 = �+�x��3��x�

j=−i
�

2m
��+�x����x�+��+�x���x�� (30)

Then the continuity relation is

�tj0�x�+� · j= 0 (31)

If the system is static, the density must be conserved:

�tj
0 = 0 (32)

Put

G =
∫

dxj0�x� (33)

and if it is found that

�G
 � ′�x�� = ��x� (34)

and the expectation value of ��x� over the ground state
does not vanish,

�0�� �0� 	= 0 (35)

i.e., if the ground state satisfying the relation (33) does not
vanish, we can expect the appearance of a boson ��x�,
whose mass is zero. This boson is called a Goldstone
boson, and the symmetry breaking takes place in the sys-
tem. This is what the Goldstone theorem insists on. The
details are in the standard book on the field theory.8

Now we apply this theorem to superconductivity. The
invariant charge is

Q =
∫

d3x�+
 �x���x� =

∫
d3x�+�x��3��x� (36)

In terms of the Nambu spinor, here �3 is crucial. In the
commutator (33), we seek for the spin operators which do

4 Rev. Theor. Sci., 4, 1–28, 2016
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not commute with �3 and find, say, �±. We then have the
Goldstone commutator as∫

d3x′���+�x′��3��x′�
 �+�x��±��x���t=t′

=
∫

d3x�±2��0��+�x��±��x′��0��(r − r ′� (37)

In details,

�+�x��+��x� = (
�+

↑ �x� �↓�x�
)( 0 1

0 0

)(
�↑�x�

�+
↓ �x�

)

= �+
↑ �x��+

↓ �x� (38)

�+�x��−��x� = �↑�x��↓�x�

Notice that here the same symbol � is used for the ordi-
nary field with spin and the Nambu spinor. The above are
nothing but the Cooper pairs, and we now find the Gold-
stone bosons � ∗ and � . In literature, it is noted that

�0��+�x��±��x��0� = ±�±
g

	= 0 (39)

where � and g are the gap and the coupling parameter,
respectively. We expect the estimate

�+ ∼ �− = �

to be reasonable.
The Cooper pairs are now the Goldstone bosons. A com-

ment about the Goldstone boson or the massless elemen-
tary excitation with k = 0 is required. Using Eq. (33), we
write the Goldstone commutator (34) as∫

d3y��0�j0�y��n��n��′�x��0�
−�0��′�x��n��n�j0�y��0��x0=y0

	= 0 (40)

where �n� is the intermediate state, and x0 = y0 implies
that this is the equal time commutator.

Since
j0�y� = e−ipyj0�0�eipy (41)

it is seen that∫
d3y��0�J0�0��n��n��′�x��0�eipny

−�0��′�x��n��n�J0�0��0�e−ipny�x0=y0

 �p�n�=pn�n��

=��pn���0�J0�0��n��n��′�0��0�eipn0y

−�0��′�x��n��n�J0�0��0�e−ipn0y�x0=y0
�

=��pn���0�J0�0��n��n��′�0��0�eiMny0

−�0��′�0��n��n�J0�0��0�e−iMny0�x0=y0
� 	=0 (42)

In order to obtain the first equality, spatial integration is
carried out. Then, considering p� = �p
 M�, we retain the

fourth component. In the last equation, when Mn 	= 0, can-
cellations will arise for the summation over n. We thus
obtain, only for Mn = 0, the finite result

�0�j0�0��n��n��′�0��0�−�0��′�0��n��n�j0�0��0�
= Im �0�j0�0��n��n��′�x��0� (43)

which is met with the requirement (34). The excitation
with Mn = 0 implies the excitation which need not the
excitation energy, suggesting the Goldstone boson.
We further note that the mass-zero excitation is the

imaginary quantity. This suggests the current to be the
phase current, as is seen in the Josephson effect.
Before closing this preliminary discussion, we want to

make a few remarks. At the beginning, we mentioned
London’s postulate that the superconducting state is char-
acterized by a statement that the wave function is rigid,
so that the current is entirely the diamagnetic current due
to only the vector potential A. “Rigid” is not really rigid,
but it is understood that the spatial derivative is vanishing,
or the current flows along the entirely flat path, which is
described in a textbook as the path going around the top of
a Mexican hat. Boldly speaking, the electron in the super-
conducting state is massless. Also, we have pointed out
that the vector potential A, which leads to the Meissner
effect, satisfies the covariant relation (6),

��A� =−k2 (44)

so that a photon is massive in the superconductor.
In the following chapters, we develop a substantial

microscopic explanation of the above assertions.

3. PROPAGATOR
In the previous section, we have found that, as is seen in
Eq. (41), the superconducting state strongly concerns the
gap function or the anomalous Green function. We want to
deal with the solid-state substances. However, the infinite
crystals described by the single band have already been
fully investigated in literature, and the recent investigations
were carried out on objects with multiband structure.13
14

The infinite system with many bands is constructed from
the unit cell, which is really a chemical molecule. The
atoms in this molecule give the band index of the real crys-
tal. In this respect, we first investigate the Green function
of a unit cell. The Green function is now shown in the site
representation.
Corresponding to the spinors (24), we define the spinor

in the site representation as

ar =
(

ar↑

a+
r↓

)

 ār = �a+

r↑ −ar↓� (45)

Due to this definition, it is unnecessary to insert �3

in the matrix G, as is seen in the Schrieffer’s book.3

Rev. Theor. Sci., 4, 1–28, 2016 5
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The commutator is

�ar 
 ās�+ =
(

�ar↑
 a+
s↑�+ �as↓
 ar↑�+

�a+
r↓
 a+

s↑�+ �as↓
 a+
r↓�+

)

=
(

�rs 0

0 �rs

)
= �rs12×2 (46)

The matrix propagator is defined by

Grs��� = −��ar ��1�
ās��2���

= −
( ��ar↑��1�
a

+
s↑��2��� −��ar↑��1�
as↓��2���

��a+
r↓��1�
a

+
s↑��2��� −��a+

r↓��1�
as↓��2���

)

= −����1−�2�ar ��1�ās��2�

+���2−�1�ās��2�ar ��1�� (47)

where � is the imaginary time, so that the propagator is
the temperature Green function or the Matsubara function.
In what follows, we put

� = �1− �2 (48)

and system depends on ��1−�2�. If we want to obtain the
gap function, we consider

Tr��+Grs���� = ��a+
r↓��1�
 a+

s↑��2��� (49)

and the standard procedure will be followed.

3.1. Hamiltonian
Various Hamiltonians can be written by using the charge
density matrix,

�rs�x� =
(

�r↑s↑�x� �r↑s↓�x�

�r↓s↑�x� �r↓s↓�x�

)
= ����

rs (50)

where the basis orbitals are put to be real, so that we do
not need the conjugation procedure for field operators.
The Hückel Hamiltonian or the single-particle Hamilto-

nian has the structure

H0 = h�
rsār�

�ar (51)

where h includes the chemical potential and can be explic-
itly written as

hrs =
∫

�rsh�x�

=
∫

dxh�x�

(
�r↑s↑�x� �r↑s↓�x�

�r↓s↑�x� �r↓s↓�x�

)
= ��h�

rs (52)

Hereafter, we use the summation convention that repeated
indices imply that the summation is carried out to facilitate
manipulations. Other two-particle Hamiltonians are given
in a similar way. Noting that

v��
rs� tu =

∫
dx dx′��

rs�x�v�x−x′���
tu�x′� (53)

we have28

Hdir = 1

2
�ār�

aas�v
ab
rs� tu�āt�

bau�
 �a
 b =↑
↓�

H ex =−1
2

�ār�
aas�v

aa
rs�ut �āt�

aau�
 �a =↑
↓�

H super = 1
2

��ār�
+as�v

+−
rs� tu�̄at�

−au�

+ �ār�
−as�v

−+
rs� tu�āt�

+au�� (54)

For the direct interaction, the quantum-mechanical Hamil-
tonian is

Hdir =
∫

dx dx′�∗
r↑�r��s↑�r��x�v�x−x′��∗

↓�x′��∗
u↓�x′�

For the field-theoretical Hamiltonian, the wave functions
are replaced by the creation.annihilation operators a+

r↑, ar↑,
and so on. These are written in the spinor notation; for
example,

a+
r↑as↑ = �a+

r↑ar↓�

(
1

0

)(
1 0

)(as↑

a+
s↓

)

= a+r

(
1 0

0 0

)
as = a+r �↑as

Note that H ex is obtained by reversing indices �u ↔ t�
in vrs� tu.

4. NONINTERACTING
“Noninteracting” implies that the Hamiltonian is bilinear
with respect to operators so that diagonalization is always
possible. It should be instructive to begin with the single-
particle case, since even if we manipulate the complicated
two-particle case, the procedures are almost the same when
the mean-field approximation is employed.
The energy for the Hamiltonian (52) is

E0 = Tr��̂H0� = hrs�āras� (55)

where �̂ is the statistical operator,

�̂ = e��H0−�� (56)

with the normalization factor �. We now define the tem-
perature Green’s function, in which � is the imaginary
time, � = it,15
16

Grs��� = −Tr�̂�����1�ar ��1�a
+
s ��2�−��−��a+s ��2�ar ��1��

= ��ar ��1�a
+
s ��2��� (57)

where
� = �1− �2 (58)

and it is assumed that the system is only dependent of the
relative time � . Then we can written E0 in terms of the
temperature Green’s function,

E0 = Tr�hrsGsr �� = 0−�� (59)

Note that hrs and Gsr are both matrices.
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The equation of motion (57) for the noninteracting
Hamiltonian (51) can be read as

��1
��as��1�ār ��2���
= ���1− �2���as��1�
 ār ��2��+�
+��as��1�
 ās′ar ′hs′r ′��1��−
 ār ��2��

= ���1− �2��sr +��ss′hr ′s′��1�ar ′��1�
 ār ��2��
= ���1− �2��sr + �hsr ′���ar ′��1�
 ār ��2��� (60)

It can be solved using the Fourier transformation15

��as��1�ār ��2��� =
1

�

∑
n

ei�n���as ār � �n�� (61)

with
�n = �2n+1��/� (62)

where the odd number indicates that particles are fermions.
Then Eq. (50) becomes

�i�n�sr ′ −hsr ′���ar ′ ār � �n�� = �sr (63)

In this step, the matrix structure of the above should
be carefully investigated. Let us assume that the single-
particle Hamiltonian is spin-diagonal:

hsr =
(

h↑
sr 0

0 h↓
sr

)
(64)

It is preferable to introduce the flame diagonalizing each
element:

h↑
sr = ��s � i��i�h�i��i��ir��↑ = �s � i�↑�i↑�i � r�↑ (65)

Then we have

��asār�� =
1
�

∑
n

�1�

×

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

��s � i��i � r��↑
i�n − �i↑

0

0
��s � i��i � r��↓

i�n − �i↓

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠

−1

= 1
�

∑
n

⎛
⎜⎜⎜⎝

��s � i��i � r��↑
i�n − �i↑

0

0
��s � i��i � r��↓

i�n − �i↓

⎞
⎟⎟⎟⎠

=
(

��s � i�n��i��i � r��↑ 0

0 ��s � i�n��i��i � r��↓
)

(66)

where
n��i↑� = 1

1+ e�i↑/kBT
(67)

Another sophisticated way starts from the decomposed
Hamiltonian

H0 = ār�
�h�

rsas (68)

The commutator is evaluated as

�as
 ār ′�
�h

�
r ′s′as′ � = �sr ′�

0��h
�
r ′s′as′ = ��h

�
ss′as′ (69)

The equation of motion

�i�n�ss′ −��h
�
ss′���as′ 
 ār � �n�� = �0�sr (70)

In the matrix notation,

�i�n −��h����a
 ā� �n�� = �0

or

��a
 ā� �n�� =
�0

i�n −��h�
(71)

In the representation that h is diagonal,

�r �h�s� = �r � i��i�h�i��i � s� = �i�r � i��i � s� (72)

the relation (71) becomes

��a
 ā� �n�� =
��i��i���i�n +���

�
i �

�i�n −���
�
i ��i�n +���

�
i �

= ��i��i���i�n +���
�
i �

�i�n�2− ��
�
i �2

(73)

Now
i�n +���

�
i

�i�n�2− ��
�
i �2

= i�n

�i�n�2− ��
�
i �2

+ ���
�
i

�i�n�2− ��
�
i �2

= 1
2

(
1

i�n − �
�
i

+ 1
i�n + �

�
i

)

+ ��

2

(
1

i�n − �
�
i

− 1
i�n + �

�
i

)

= 1
2

(
1

i�n + �
�
i

+ 1
i�n + �

�
i

)
�summing �n�

→ 1
2

�n��
�
i �+n�−�

�
i ��+ ��

2
�n��

�
i �−n�−�

�
i �� (74)

We evaluate G↑
rs,

G↑
rs = Tr�↑

{
�r � i��i � s��0

2
�n��

�
i �+n�−�

�
i ��

+ ��

2
�n��

�
i −n�−�

�
i ��

}

= �r � i��i � s��↑n��
↑
i � (75)

We then have
1
�

∑
n

G↑
rs�0

−� = 1
�

∑
n

�r � i��i � s�
i�n − �

↑
i

= �r � i�n��
↑
i ��i � s�

(76)
This relation holds for both ↑ and ↑, and recover the
result (66).
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Along the way, we give the energy expression for
Eq. (51):

E0 = Tr�hrsGsr �

= Tr

(
h↑

rs 0

0 h↓
rs

)

×
( �s�i�n��

↑
i ��i�r� 0

0 �s�i�n��
↓
i ��i�r�

)
(77)

It may be needless to present another illustration:

E0 = Tr�hrsGsr � = Tr���h�
rs���

�G�
sr � (78)

The result is meaningful if ���� = �0, which leads to, in
the present case,

�� = �� = �↑
 or �� = �� = �↓

Such manipulations will be used in the later investigation.

5. INTERACTING
In this chapter, the electron–electron interactions are taken
into account, and we will discuss how they lead to
the superconducting state. The Hamiltonians given in
Eq. (54) are

Hdir = 1
2

�ār�
aas�v

ab
rs� tu�āt�

bau�
 �a
 b =↑
↓�

H ex =−1
2

�ār�
aas�v

aa
rs�ut �āt�

aau�
 �a =↑
↓�

H super = 1

2
��ār�

+as�v
+−
rs� tu�̄at�

−au�

+ �ār�
−as�v

−+
rs� tu�āt�

+au��

These are written in the mean-field approximation. The
estimate beyond this approximation is not the case of the
present consideration. We have

H0 = ha
rsār�

aar �a =↑
↓�

Hdir = �ār�
aas�v

ab
rs� tu�āt�

bau� = �ār�
aas�D

a dir
rs

�a
 b =↑
↓�

H ex =−�ār�
aas�v

aa
rs�ut�āt�

bau� = �ār�
aas�D

a ex
rs

�a =↑
↓�

H sup = �ār�
+as�v

+−
rs�ut�āt�

−au�+ �ār�
−as�v

−+
rs�ut�āt�

+au�
= �ār�

+as�D
− sup
rs + ār�

−as�D
+ sup
rs (79)

where

Da dir
rs = vab

rs� tu�āt�
bau�

Da ex
rs =−vab

rs�ut�āt�
bau��ab

D+ sup
rs = v+−

rs� tu�āt�
−au� (80)

where �· · · � implies the ground state average, actually
which is obtained by wave functions in the previous step
during the SCF calculations.
These Hamiltonians are classified into two kinds called

modes—the normal many-electron problem and that for
the superconductivity:

H = Hnorm +H sup (81)

where

Hnorm = �ār�
aas��h

a
rs�rs +Da dir

rs +Da ex
rs �

H sup = ār�
±asD

∓ sup
rs (82)

The main difference between the two is that in the for-
mer we have the single-particle Hamiltonian, and in the
latter we do not. Various Drs are complicated, but they are
merely the c-numbers in this treatment. The propagator in
question in Eq. (57) is presented here again:

Grs��� = −Tr�̂������ar ��1�a
+
s ��2�−��−��a+s ��2�ar ��1��

= ��ar ��1�a
+
s ��2���

The equation of motion can be read as

��1
��as��1�ār ��2���
= ���1− �2���as��1�
 ār ��2��+�
+��as��1�
 ās′ar ′H

a
s′r ′��1��−
 ār ��2��

�a� norm, sup�

= ���1− �2��sr +Da
sr ′�

a��ar ′��1�
 ār ��2��� (83)

Making the Fourier transformation with respect to
� = �2− �2 gives

�i�n −Da
rs′�

a�Gs′r = �sr (84)

or, in the matrix form,

G��n� = 1

i�n −Da�a
= i�n +Da�a

�i�n�2− �Da�2
(85)

Note that Da consists of the single-electron part and
the two-electron interaction term which involves another
mate �a

tu combined with the propagator �āt�
aau�:

Da�x� = ha�x�+
∫

dx′v�x−x′��b
tu�x′��b�ātat� (86)

However, the mean-field approximation makes this as if
it were the single-electron interaction. A few comments
will be given about the matrix character of G. This is a
big matrix with site indices, and each element is a �2
2�-
matrix in the spin space. The index a characterizes the
mode of the mean-field potential. All the modes are inde-
pendent of each other and are individually diagonalized.
We now introduce a flame, in which these are diagonal:

�ia�Da�ia� = !a
i (87)
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Look at the right-hand side of Eq. (85) and remem-
ber the Einstein convention that repeated indices imply
summation:

�Da�2 = �!↑�2+ �!↓�2+ �!+�2+ �!−�2

= �!norm�2+ �!sup�2 (88)

where the second line is in a simple notation. Then we
have

G��n� = �ia��i�n +�ia�Da�ia��a��ia�
�i�n − �!norm

i +!
sup
i ���i�n + �!norm

i +!
sup
i ��

= �ia�1
2

(
1

i�n − �!norm
i +!

sup
i �

+ 1

i�n + �!norm
i +!

sup
i �

)
�ia�+ �ia�

× Da
ii�

a

2�!norm
i +!

sup
i �

×
(

1

i�n − �!norm
i +!

sup
i �

− 1

i�n − �!norm
i +!

sup
i �

)
�ia� (89)

Taking the �r
 s� matrix elements and the mode c, which
is achieved by the operation,

Tr�cGrs = Gcrs (90)

we select the terms on the right-hand side with the mode c
satisfying

Tr�c�a = 1 (91)

Otherwise, the Tr operation leads to the vanishing result.
Carrying out the summation over �n, we get

Gc
rs�0

−�

= 1
�

∑
n

Gc
rs��n�= 1

�

∑
n

�rc � ia�1
2

×
(

1

i�n−�!norm
i +!

sup
i �

+ 1

i�n+�!norm
i +!

sup
i �

)
�ia �sc�

+ 1
�

∑
n

�rc � ia� Da
ii

2�!norm
i +!

sup
i �

×
(

1

i�n−�!norm
i +!

sup
i �

− 1

i�n+�!norm
i +!

sup
i �

)
�ia �sc�

=�rc � ia�1
2

�n�!norm
i +!

sup
i �+n�−!norm

i −!
sup
i ���ia �sc�

+�rc � ia� Da
ii

2�!norm
i +!

sup
i �

×�n�!norm
i +!

sup
i �−n�−!norm

i −!
sup
i ���ia �sc�

= 1
2

�rs−�rc � ia� Da
ii

2�!norm
i +!

sup
i �

×tanh�!i/2kBT ��ia �sc� (92)

where
n�!a

i � = 1
1+ e!a

i /kBT
(93)

and

n�!�+n�−!� = 1

n�!�−n�−!� =−tanh
(

!

2kBT

)

In the estimation of matrix elements, the chemical poten-
tial which has been disregarded up to now is taken into
account. Namely, the Hamiltonian has an additive term
−�ārar , which causes

!a
i → !a

i −� < 0
 while −!a
i →−�!a

i −�� > 0

The mean-field potentials are carefully treated. In modes
with ↑ and ↓, we have the nonvanishing single-particle
parts, h↑

rs�rs and h↓
rs�rs, which are usually negative. How-

ever, for superconducting modes, h±
rs = 00, and the chem-

ical potential is lost for the same reason. The latter may
be closely related to the fact that the number of particles
is not conserved in a superconductor. These circumstances
are crucial for the superconducting mode.

5.1. Unrestricted Hartree–Fock (HF)
Let us review the SCF procedure. We now discuss the ordi-
nary many electron system. As an example, the propagator
with the up spin, Eq. (89), is

G↑
rs�0

−� = 1
2
�r↑ � s↑�−�r↑ � ia� Da

ii

2�!norm
i +!

sup
i �

× tanh�!a
i /2kBT ��ia � s↑� (94)

where �r↑ � s↑� is the overlap integral between the sites r
and s and approximately vanishes, and

Da
ii = h

↑
ii + v

↑a
ii� tuGa

tu − v
↑↑
ii� tuG↑

tu

�a ↑
↓� (95)

Note that

tanh�!a
i /2kBT � < 0
 since !a

i < 0 (96)

Look at the potential of the mode ↑,

D↑�x� = h↑�x�+
∫

dx′v�x−x′��b
tu�x′��b�ātat� (97)

In this case, there is h↑�x�, whose matrix element should
be negative, so that even if the matrix elements of the sec-
ond terms are positive, the �r
 s� matrix element of D↑�x�
is probably negative. This is usually the case in atoms,
molecules and solids. In evaluating D↑�x�, the propagators
(wave functions) of all other modes are required. In this
respect, Eq. (94) is the self-consistent relation between
propagators. Usually, the self-consistent relation between
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wave functions is given in a such a way that, at the begin-
ning, the total energy is given by the potentials given
in terms of tentatively approximated wave functions, and
the new approximate wave functions in the next step are
obtained by optimizing the total energy. This procedure is
lacking in the present consideration.

5.2. Gap Equation for Superconductivity
In the case of superconductivity, since �+��−� is traceless,
the first term of Eq. (92) vanishes, and also h+ = 0. Now
Eq. (92) can be read as

G+
rs�0

−� = −
{
�r+ � i+� v+−

ii� tu�ātau�−�

2�!norm
i +!

sup
i �

�i+ � s+�
}

× tanh�!+
i /2kBT �

= −
{
�r+ � i+� v+−

ii� tuG−
tu

2�!norm
i +!

sup
i �

�i+ � s+�
}

× tanh�!+
i /2kBT � (98)

This complicated equation gives the relation between G+
rs

and G−
rs, both referring to the superconductivity, and is

called the gap equation. A few points should be presented.
While selecting the superconducting mode, we used

Tr��+�−� = Tr

(
0 1

0 0

)(
0 0

1 0

)

= Tr

(
1 0

0 0

)
= 1 (99)

so that
Tr��+v+a�a� = v+−

ii� tu (100)

The relation (98) yields

−
{
�r+ � i+� v+−

ii� tu

2�!norm
i +!

sup
i �

�i+ � s+�
}

> 0 (101)

As has been mentioned previously, we have no chemical
potential in the superconducting state, so that !+

i is pos-
itive, the same as v+−

ii� tu is. Therefore, it is required that
�r+ � i+��i+ � s+� be negative so that Eq. (101) can hold.
This is really possible, as will be mentioned below. Thus,
we are not at all concerned with the electron–phonon cou-
pling. Let us perform the successive approximations as

�r+ � i+�v+−
ii� tu�i+ � s+�tanh�!+

i /2kBT �

≈
occ∑
i

�r+ � i+�v+−
ii� tu�i+ � s+� �T → 0�

= qrsv
+−
ii� tu�< 0� (102)

Here, v+−
ii� tu is the electron–electron interaction between

two electron densities and is certainly positive (repulsive).
However, the bond order is not necessarily so, but q14 < 0

in the following example. The last relation was usually
assumed at the beginning of the superconductivity theory.
We thus obtain the condition for the superconduct-

ing state to appear; it is purely electronic and is apart
from the electron–phonon coupling mechanism. Actually,
for the chain molecule of four carbon atoms, called buta-
diene, the matrix qrs
 �r
 s� = �1∼4� is

�qrs� =

⎛
⎜⎜⎝
1�000 0�894 0�000 −0�447

1�000 0�447 0�000
1�000 0�894

1�000

⎞
⎟⎟⎠ (103)

We can clearly see that

v+−
11�14q14 < 0 (104)

6. ILLUSTRATIVE EXAMPLE, CRITICAL
TEMPERATURE

The gap Eq. (98) is, in appearance, considerably differ-
ent from the usual one. We rewrite this equation in a
form similar to the usual one. To this end, we adopt, as
an example, a polyacene high polymer. Benzene, naph-
thalene, anthracene, etc. are a series of polyacene, shown
in Figure 1. Here, the unit cell which is the butadiene
molecule is in the dotted rectangle numbered by n. The
interactions t1 and t2 are given for the corresponding
bonds.

6.1. Bond Alternation
At the beginning, we discuss the bond alternation or the
Peierls instability of these molecules. The infinite chain of
acetylene, the so-called polyacetylene, has the bond alter-
nation, i.e., the long and short bonds do not lose their
memories in the limit where an infinite chain has been
formed. This is popular with chemists,19 but physicists call
it Peierls distortion.20 The bond alternation causes the gap
between the conduction and valence bands. It has been said
that this discontinuity prevents the superconducting phase
from arising. However, this is an old-fashioned assertion
and now seems sceptical.
In the Hückel theory, the interaction matrix elements are

put as t1 for the shorter bond and t2 for the longer bond:

H0 = −t1�a
+
2na1n +a+

1na2n�

− t2�a
+
1n+1a2n +a+

2nan+1� (105)

n n+1

t1

t2

unit cell

polyacene

Fig. 1. Polyacene.
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where we consider the neighboring unit cells numbered
n and n+ 1, and each cell has two kinds of bonds. The
transfer integrals are parameterized as

t1 = t−�
 t2 = t+�
 �� > 0
 �/t � 1� (106)

and then the Hamiltonian is easily diagonalized as

�k =±�t2�1+ cosk�+�2�1− cosk��1/2 (107)

where + and − correspond to the conduction and valence
bands, respectively. We are interested in the features at the
zone boundary k = �:

�c
� = 2�
 �v

� =−2� (108)

Here, the superscripts c and v indicate the conduction and
valence bands, respectively. When � 	= 0, certainly we have
the gap, and if � = 0, the two bands continuously join into
a single band called the half-filled band.

Next, we turn to the polyacene, whose unit cell is the
butadiene molecule. In this case, we obtain four bands:

�c′
k = 1

2
�t3+ �t23 +4�t̃k�2�1/2� =−�v′

k

�c
k =

1
2

�−t3+ �t23 +4�t̃k�2�1/2� =−�v
k (109)

where
t̃k = t1+ t2e

ik (110)

The usual pairing property in alternant hydrocarbons is
also seen in this case. Employing the parametrization (106)
gives, at k = � ,

�v
� = 1

2
�t3+ �t23 +16�2�1/2� ≈ 4t3��/t1�

2 (111)

When � = 0 (without bond alternation), we have

�v
k =

1
2

�t3− �t23 +8t2�1+ cosk��1/2� (112)

Consider single-particle states. If �= 0 and k=� we have,
from Eq. (110), t̃ = 0, so that the amplitudes at sites 2 and
5 vanish. Therefore, when � = 0, we get at k = � ,

�	v
k� =

1

2
�a+

1k −a+
4k��0�

�	c
k� =

1
2

�a+
1k +a+

4k��0� (113)

It is seen that �	v
k� is antisymmetric about the C2v symme-

try axis, and −�	v
k� is symmetric. Thus, v and c bands are

not continuous at k = � .

6.2. Deformation Energy
For these systems, let us study whether the bond alterna-
tion is energetically favorable or not. We assume that the
energy gain due to the bond alternation mainly contributes
to the highest valence band energy, �v

k.

The case of polyacetylene. The energy gain �E is

�E =
∫ 2�

0

dk

2�
��v

k − �v
k�0�� (114)

where the second term refers to the case without bond
alternation �� = 0�. In Eq. (107), we shift the integration
origin from 0 to � , then approximate

cosk = cos�� +p� ≈−1+p2/2

For small p, we obtain

�E = −
∫ 2�

0

dk

2�
�
√

�tp�2+4�2− tp�

= 2t

�

(
�

t

)2

ln
(

�

�t

)
�< 0� (115)

For polyacene, similar treatment of �v
k of Eq. (109) leads to

�v
k =

1
2

(
1−

{
1+16

(
�

t

)2

+4p2

[
1−

(
�

t

)2]}1/2)
(116)

and then the deformation energy becomes

�E = t

(
�

t

)2(
�

4
− 2

�
ln 4�

)
≈−0�83 t

(
�

t

)2

(117)

The bond alternation looks favorable for both cases. How-
ever, when the effect of the � bond is taken into account,
this almost cancels out the stabilization energy of the
� system in the case of polyacene. On the other hand, this
is not the case for polyacetylene due to the singular term
in the relation (117).
Therefore, in what follows, by concentrating on poly-

acene, we are free from the bond alternation.

6.3. Polyacene, Gap Equation, Critical Temperature
The unit cell of polyacene is a butadiene molecule com-
posed of four 2p� carbon atoms. The Hamiltonian in the
tight-binding approximation is given as

H0 = t�a+
n1an2+a+

n2an3+a+
n4a

+
n3+h�c�

+ t�a+
n+1
1an2+a+

n+1
4a
+
n3+h�c� (118)

where the second line connects the unit cells n and n+1.21

The band structure of levels and the linear combination
of atomic orbitals (LCAO) coefficients U are

�1�k� = t

2
�1+ s�k��

�2�k� =− t

2
�1− s�k��

�3�k� = t

2
�1− s�k��

�4�k� =− t

2
�1+ s�k�� (119)
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with

s�k� =√
9+8 cos k (120)

U =

⎛
⎜⎜⎜⎜⎜⎝

N4 N3 N2 N1

−N4�4/t̃k −N3�3/t̃k −N2�2/t̃k −N1�1/t̃k

N4�4/t̃k −N3�3/t̃k N2�2/t̃k −N1�1/t̃k

−N4 N3 −N2 N1

⎞
⎟⎟⎟⎟⎟⎠

(121)
where, for example,

N 2
1 = �t̃k�2

2��t̃k�2+ �2
1�


 1/t̃k =
eik/2

2t cos�k/2�
(122)

At this stage, we have completed, in principle, the usual
many-electron problem. The mean-field approximation
makes the interaction problem a one-particle problem even
though the SCF treatment is required at each step. In other
words, from the viewpoint of the Hückel theory, the spin-
diagonal parts provide the answer. On the other hand, the
spin-off diagonal part, which means less in the case with-
out electron–electron interactions, is responsible for the
superconductivity.
Up to the previous chapter, the problem had been

investigated in the site representation. That is to say, the
system is considered to be composed of N sites. How-
ever, the real substance is formed from unit cells, so
that the system is a repetition of the unit cell. The usual
band theory of polyacene has thus been completed at this
stage.
We turn to the onset of superconductivity. In this

case, the single-particle approach is almost meaningless,
but the pair state—say, the wave function of a Cooper
pair—should be investigated. For this purpose, the Green
function of a Cooper pair is most preferable. The gap
Eq. (98) is nothing but the SCF equation for a Cooper
pair.
The electronic structure of the single butadiene molecule

referring to k = 0 is suggestive. Let the total number of
sites of high polymer polyacene be N . The number of sites
in the unit cell is four. Then N = 4n, with the number
of unit cells n. The numbers 1∼4 are the band indices;
then we have the chemical potential between the 2n level
and 3n level. The Cooper pair should be the hole pair of
the 2n level indicated by mode (−) or the particle pair of
the 3n level. The discussion is confined to these levels in
solid-state physics, even if the interaction with other bands
is taken into account.
The 2n and 2n+ 1 levels are called highest occupied

molecular orbital (HOMO) and lowest unoccupied molec-
ular orbital (LUMO). These features and behaviors are not
so far or qualitatively the same as those for k = 0.

The electronic structure of a single butadiene molecule
is suggestive. The levels and the bond orders are (the
unit= t)

�1

�2

�3

�4

∣∣∣∣∣∣∣∣∣∣

−1�618

−0�618

0�618

1�618

(123)

Here, �1 and �2 are occupied (valence) levels, while �3
and �4 are unoccupied (conduction) ones. Let the probabil-
ity amplitude, with which the electron on level i is found
at the site r , be �r � i�, then the bond order qrs is defined
as (at the zero temperature)

qrs =
occ∑
i

�r � i��i � s� (124)

where the summation includes the spin state. In the deter-
mination of the attractive electron–electron interaction, the
bond order is of crucial importance.
The bond orders are

Site

1 1�000 0�894 0�000 −0�447

2 0�894 1�000 0�447 0�000

3 0�000 0�447 1�000 0�894

4 −0�447 0�000 0�894 1�000

(125)

We indicate the negative value of q14. In solid-state
physics, the discussion is concentrated on the highest
valence band or the lowest conduction band. In the
quantum-chemical language, the partial bond orders refer-
ring only to level 2, qH

rs , which seem not so far from those
with k, are listed as

Site

1 0�362 0�224 −0�224 −0�362

2 0�224 0�138 −0�138 −0�224

3 −0�224 −0�138 0�138 0�224

4 −0�362 −0�224 0�224 0�362

(126)

We indicate the negative value of qH
14.

If we want to look at the band structure, such as qH
rs ,

it is multiplied by the third column of Eq. (121).
Based on these results, we may perform successive

approximations or simplifications:
(1) The denominator of Eq. (98) is the sum of the ordinary
Hartree–Fock energy and that of the superconducting state,
and the latter is

!
sup
i =−v+−

ii� tuG−
tu (127)

The total energy is obtained by summing

!i = !norm
i +!

sup
i (128)

with respect to the chemical potential.
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(2) Each level with !i has really a band structure and is
then written as !i�k , by stressing the band structure by
k with the band index i. Then i is put to be the highest
occupied level, and the integration over k is carried out.
The bond orders thus obtained are approximated by the
partial bond orders qH

rs .
(3) The electron–electron interaction, which is effectively
negative due to the chemical structure of species, can be
simply written for g < 0:

g = qrsv
−+
rs� tu (129)

(4) The energy interval establishing the superconductivity
in the BCS theory is related to the electron–phonon inter-
action, ��D (Debye frequency). In the present theory, it is
replaced by the band width nearly equal to �g�.
(5) Assuming

G+
s↑
 r↓�0−� = G+

t↑
u↓�0−� (130)

in Eq. (98), we have

1= gN �0�
∫ �g�

0

d"

"+!sup
tanh

(
" +!sup

2kBT

)
(131)

where " = !norm. The critical temperature TC is deter-
mined by the condition that !sup vanishes at this tempera-
ture. The integration in Eq. (131) is carried out as usual.
Approximating

∫ d3k

�2��3
= N �0�

∫
d"

gives

∫ �g�

0

d"

"
tanh

(
"

2kBT

)
=
∫ Z

0

dz

z
tanhz
 z = �g�/2kBT

= �ln ztanhz�Z
0 −

∫ �

0
dz ln zsech2z (132)

where the upper limit in the second integration is replaced
by �, which makes it integrable:15∫ �

0
dz ln zsech2z =− ln

4e�

�

 � is the Euler constant

A simple rearrangement of the result gives

kBTC = 2e�

�
�g�e−1/N �0�g ∼ 1�13�g�e−/N �0�g (133)

The result is entirely the same as the current one. However,
since it is probable that

�g�/kBT ∼ 100 (134)

the critical temperature is, at most, enhanced by this
value, even though it is considerably reduced by the
factor e−1/N �0�g.

6.4. Conclusion
As has been presented, superconductivity is not a too-
complicated phenomenon. If we employ the spinor repre-
sentation, superconductivity is described in parallel with
the normal electronic processes. If we find, in the copper
oxide complex, the four-site unit as a butadiene molecule,
it might be the origin of the superconductivity of this mate-
rial. We think that it is not so difficult a problem for quan-
tum chemists.

7. LINEAR RESPONSE MAGNETIC
RESONANCE IN NORMAL AND
SUPERCONDUCTING SPECIES;
SPIN-LATTICE RELAXATION TIME

7.1. Introduction
The theory of linear response is one of the main topics in
solid-state physics, and its application to superconductivity
is also a fundamental problem. Perhaps the most important
problem is the Meissner effect. However, we are now inter-
ested in the magnetic resonance, whose main theme should
concern the relaxation time. Let us discuss the spin-lattice
relaxation time T1 in the nuclear magnetic resonance. An
elegant theory has been provided by Kubo and Tomita,22

and revised by us with the temperature Green function.23

The spin–lattice relaxation time T1 increases remarkably
in a superconductor just below the critical temperature.
This is explained by the BCS pairing theory and is said
to be its brilliant triumph.3
24
25 The external perturbation
acting on the electron is written as

H ′ = Bk�
k′� ′c+
k� ck′� ′ (135)

where c+
k� , ck� , etc. are the creation and annihilation oper-

ators of an electron in the normal phase, and Bk�
k′� ′ is
the matrix element of the perturbation operator between
the ordinary one-electron states in the normal phase. The
problem is as follows: If we rewrite it in terms of opera-
tors of a quasiparticle in the superconducting phase, what
will arise?
The time reversal to the above, B−k′−� ′ 
−k−� , has the

same absolute value, but the phase is the same or the
reverse.
It is possible to classify as:

1±. The spin flip-flop does not arise:

Bk�
k′� �c+
k� ck′� ± c+

−k′−�c−k−� �

2±. The spins flip-flop does arise:

Bk�
k′−� �c+
k� ck′−� ± c+

−k′�c−k−� �

As seen above, the theory implicitly assumes that the
system is a perfect crystal and is described by the sin-
gle wave vector k. The positive and negative signs of
k indicate waves propagating from the vertex or off
the vertex. Before entering into the discussion about the
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relaxation time of the magnetic resonance, we briefly
review the Bogoliubov theory.3
10
15 The Bogoliubov trans-
formation defines a quasiparticle responsible for the
superconductivity as(

�k↑

�+
−k↓

)
=
(

uk −vk

vk uk

)(
ck↑

c+
−k↓

)
(136)

with
u2

k − v2
k = 1

The spirit of the Bogoliubov transformation is to mix the
operators ck↑ and c+

−k↓, which are different in spin (as to
the wave number, this mixing is not so serious) and not
mixed in the normal situation. The quasiparticle yields the
new ground state near the chemical potential. The stabi-
lization energy thus obtained is called the gap energy, �k.
What we have done in Section 3 is a substantial under-
standing of this reason. However, if we want to make the
±k distinction meaningful, it is natural to adopt the four-
component spinor—say, the extended Nambu spinor (per-
haps spurious).26 For ordinary states,

c+k = (
c+

k↑ c−k↓ c−k↑ c+
k↓
)

 ck =

⎛
⎜⎜⎜⎜⎜⎝

ck↑

c+
−k↓

c+
−k↑

ck↓

⎞
⎟⎟⎟⎟⎟⎠ (137)

and, for the superconducting state,

�+
k = (

�+
k↑ �−k↓ �−k↑ �+

k↓
)

 �k =

⎛
⎜⎜⎜⎜⎜⎝

�k↑

�+
−k↓

�+
−k↑

�k↓

⎞
⎟⎟⎟⎟⎟⎠ (138)

These are connected with each other by the Bogoliubov
transformation as

�k = Ukck
 �+
k = ckU

+
k (139)

where

Uk =
(
uk 0

0 u+
k

)

 with uk =

(
uk vk

−vk u+
k

)
(140)

Careful manipulation is instructive.
Case 1+:

�c+
k� ck′� + c+

−k′−� c−k−� �

= c+k #3ck′ = �+
k Uk#

3U+
k′ �k′ (141)

where

#3 =
(

�3

−�3

)
(142)

This is the 4× 4 matrix manipulation; however, it is
enough to note the upper half of the result.

The upper half of Eq. (139) is

(
c+

k↑ c−k↓
)( 1 0

0 −1

)(
ck′↑

c+
−k′↓

)

=(
�+

k↑ �−k↓
)(u v

−v u

)(
1 0

0 −1

)(
u′ −v′

v′ u′

)(
�k′↑

�+
−k′↓

)

=(
�+

k↑ �−k↓
)(uu′ −vv′ −uv′−vu′

−vu′−uv′ vv′ −uu′

)(
�k′↑

�+
−k′↓

)
(143)

where u and v are the abbreviations of uk and vk, respec-
tively, while u′ and v′ are those of uk′ and vk′ .
Case 1−: ∑

�

�c+
k� ck′� − c+

−k′−� c−k−� �

= c+k 1ck′ = �+
k Uk1U+

k′ �k′ (144)

The upper half of the above is

(
�+

k↑ �−k↓
)(uu′ + vv′ −uv′ + vu′

−vu′ +uv′ vv′ +uu′

)(
�k′↑

�+
−k′↓

)
(145)

As is shown clearly, the original term is transformed in
the quasiparticle representation into a combination of the
scattering term with the diagonal element in the uk matrix
and the creation or annihilation of a pair with the off-
diagonal element of u. These matrix elements are called
the coherent factors.
Let us turn to the case where the spin flip-flop is

allowed.
Case 2+:

c+
k� ck′−� + c+

−k′� c−k−� = c+k #J ck′ = �+
k Uk#J U+

k′ �k′ (146)

with

#J =

⎛
⎜⎜⎝

1
−1

−1
1

⎞
⎟⎟⎠ (147)

This relation connects the left half of �+
k and the lower

half of �k′ , by giving

Eq. (147) = (
�+

k↑ �−k↓
)(uu′ + vv′ uv′ − vu′

−vu′ +uv′ −vv′ −uu′

)

×
(

�−k′↑

�+
k′↓

)
(148)

Case 2−:

c+
k� ck′−� − c+

−k′� c−k−� = c+k Jck′ = �+
k UkJU+

k′ �k′ (149)

with

J=

⎛
⎜⎜⎝

1
1

1
1

⎞
⎟⎟⎠ (150)
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This relation also connects the left half of �+
k and the

lower half of �k′ , and we have

Eq. (6.16) = (
�+

k↑ �−k↓
)( uu′ − vv′ uv′ + vu′

−vu′ −uv′ −vv′ +uu′

)

×
(

�−k′↑

�+
k′↓

)
(151)

Note that, at present, the scattering terms are off-
diagonal, and the creation and annihilation terms are
diagonal.
By the use of the relations3
10
15

u2
k =

1
2

(
1+ �k

Ek

)

 v2

k =
1
2

(
1− �k

Ek

)

E2
k = �2

k +�2
k (152)

(�k is the gap energy), the coherent factors are expressed
substantially as

1±� �uu′ ∓ vv′�2 = 1
2

(
1+ �k�k′

EkEk′
∓ �k�k′

EkEk′

)

2±� �uv′ ∓ vu′�2 = 1
2

(
1∓ �k�k′

EkEk′

)
(153)

In case 1+, we have the ultrasonic attenuation, while the
electromagnetic interaction is in case 2+ and the magnetic
resonances are in case 2−.

7.2. T1 in NMR
A detailed analysis of the spin–lattice relaxation time T1

in the nuclear magnetic resonance will be presented in the
next section. Here, the results are given briefly

T1 ∼
∑
kk′

�Bkk′ �2
1

2

(
1+ �k�k′

EkEk′

)
nk�1−nk′�

×��Ek −Ek′ −�� (154)

where � is the applied radio frequency. By converting the
summation (explicitly shown) to the integration, and fur-
ther by using the relation of state densities,

N �E�dE = N ���d�
 then

N �E�

N ���
= d�

dE
=

⎧⎪⎨
⎪⎩

E

�E2−�2�1/2
�E > ��

0 �E < ��

(155)

we rewrite Eq. (152) for � � � as

T1 ∼ �B�2N 2�0�
∫ �

�

1
2

(
1+ �2

E�E +��

)

× E�E +��kBT �−�n/�E� dE

�E2 −�2�1/2��E +��2−�2�1/2
(156)

where the coupling constant and the state density are
replaced by their suitable averages. This integral is
divergent. Therefore, T1 of a superconductor is strongly
enhanced just below the critical temperature. This phe-
nomenon was observed and explained by Slichter et al.24
25

This was said to be one of the brilliant victories of the
BCS theory. However, it has been found, in the recent
experiments on the high-temperature superconductors or
the copper oxide superconductors, that the T1 enhancement
is lost. This phenomenon is considered deeply connected
with the mechanism of the high-temperature superconduc-
tivity of these species, and it attracted the interest of many
investigators.27
29 However, as far as we know, the theory
of magnetic resonance of a superconductor has been done
almost entirely under the scheme mentioned in this intro-
duction. Then it will be preferable to develop the theory of
magnetic resonance in accordance with the sophisticated
recent theory of superconductivity.

7.3. Theory with Green’s Function
Our idea is as follows: the algebra of electrons is related
to their field operators. In the same way, we assume the
field for nuclei. For example, the creation operator for
a nucleus a+

KM yields the nuclear motion with K and
M , which are spatial and spin quantum numbers, respec-
tively. The energy spectrum of the propagator �KM��� =
��aKM���a+

KM �� gives the line shape of the magnetic
resonance.
The nuclear propagator �KM��� sees the electron sea,

followed by the electron excitation in the spin space. This
gives the additional line width of the nuclear magnetic
resonance. The phenomenon looks like the vacuum polar-
ization in quantum electrodynamics. The self-energy part
that has thus arisen in the nuclear energy is the source of
the line shape of the nuclear magnetic resonance.23

The spin–lattice relaxation time of the nuclear spin I z

is given by the imaginary part of the magnetic susceptibil-
ity �zz, which is equal to ��+− +�−+�/2 in the spatially
homogeneous system. Here, ± correspond to �Ix ± iI y�/2,
respectively. The ensemble average of a change, ��I+�t��,
is given by the linear response theory as

��I+�t�� = i
∫ t

−�
dt′ Tr��G�H ex�t′�
 I+�t��−� (157)

where �G is the grand canonical statistical operator. How-
ever, the chemical potential is not given explicitly, unless
otherwise stated. The rotating magnetic field causing
the magnetic transition is, assuming a single mode for
simplicity,

H ex�t� = HR�I+�t�ei�t + I−�t�e−i�t� (158)

As has been said, the spin–lattice relaxation arises from
the interaction between the nuclear spin and the electron
spin. In other words, the electron spins play the role of a
lattice system

H ′ = ��g�BF �R
 r�I ·S (159)
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where F �R
 r� is a function of spatial coordinates of the
nucleus, R, and that of the electron, r . The term � is
the gyromagnetic ratio of the nucleus, and g and �B

are the g factor and the Bohr magneton of the electron,
respectively.
Now the second quantization of the above is carried out.

First of all, the orthonormalized wave function describing
the nuclear behavior, �"K�R�M�, is introduced as

�HN +HM��"K�R�M� = ��K +M��"K�R�
 M�
= �KM �"K�R
 �M� (160)

with
�KM = �K +M

where HN is the spatial part and HM is the Zeeman part.
Then we have

I → �"K�R�M �I�"K′�R�M ′�a+
KMaK′M ′

= �M �I�M ′�a+
KMaK′M ′�KK′ (161)

A similar equation is given for electrons,

�HS +Hm��k�r��m� = ��k +m���k�r�
 m�
= �km��k�r�
 m� (162)

where
�km = �k +m

so that

H ′ → h�g�B�M �I��M ′��m�S�m′��"K�R�

×�k�r��F �R
 r��"K′ �R��k′�r��
×�a+

KM aK′M ′��c+
kmck′m′� (163)

If the nuclear motion is assumed to be that of a harmonic
oscillator, a+

KM and aKM are the creation and annihilation
operators of vibrational excitations. When the nuclei carry
noninteger spins, these are considered to obey the Fermi
statistics or satisfy the anticommutation relation

�a+
KM
 aK′M ′ �+ = �KK′�MM ′ (164)

However, as will be seen in the following, this selection
of the statistics is not fatal for the theory. Needless to
say, the operators for electrons satisfy the anticommutation
relations.
The change of I+ in Eq. (157) can be written, in the

interaction representation, as (we retain the I− term in
Eq. (158))

��I+�t�� = i�HR

∫ t

−�
dt′e−i�t′

Tr��G�M −1�I−�M��M �I+�M −1�
�a+

K
M−1�t
′�aK
M �t′�
 a+

K
M �t�aK
M−1�t��−�

= −�HR

∫ t

−�
dt′e−i�t′DK
M−1
M �t′ − t�

= −1
2

�HRe−i�t
∫ �

−�
dse−i�s

∑
KM

DK
M−1
M �s�

= −1
2

�HRe−i�tDK
M−1
M ��� (165)

From this result, the magnetic susceptibility of the present
system is

�+−��� =−�

2
DK
M−1
M ��� (166)

In the course of derivation, the matrix elements of spin
operators are put to be equal to 1, and then the Tr opera-
tion is carried out. Here, DK
M−1
M �s� is a retarded Green
function,

DK
M−1
M �s� = −i��s�Tr��G�a+
KM−1�s�aKM �s�


a+
KM aKM−1�−� (167)

and DK
M−1
M ��� is its Fourier transform. Now our prob-
lem is to estimate this retarded function.
The retarded Green function is easily obtained by ana-

lytical continuation from the Matsubara function (or the
temperature Green function with imaginary time �) which
is causal in � ,

�K
M−1
M ���

=−Tr��GT��a+
K
M−1���aK
M ���a+

K
M aK
M−1�� (168)

for which the Feynman diagram analysis is available.15

7.4. Noninteracting
Here, we deal with the case without the spin–lattice inter-
action. It might be trivial; however, it seems instructive for
the later investigation. By the use of the simplified nota-
tion, �· · · � = Tr��G · · · �, the Green function in this case is
written as

�0
K
M−1
M ��� = �T��a+

KM−1���aK
M ���a+
KM aKM−1��

= �0
KM ����0

KM−1�−�� (169)

where
�0

KM ��� =−�T��aKM���a+
KM �� (170)

and the corresponding Fourier transform of Eq. (169) is

�0
K
M−1
M ��n� = 1

�

∑
�n

�0
KM��n��0

KM−1��n −�n� (171)

where
�0

KM ��n� = 1
i�n − �KM

(172)

Therefore

�0
K
M−1
M ��n�

= 1
�

∑
�n

1
i�n − i�n − �KM−1

· 1
i�n − �KM

= 1
�

∑
�n

(
1

i�n − i�n − �KM−1

− 1
i�n − �KM

)
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× 1
i�n + �KM−1− �KM

= �n��KM−1�−n��KM ��
1

i�n − �KI

(173)

where
�KI = �KM − �KM−1

and it is noted that �n is even, and that it does not matter in
obtaining the particle number. The retarded Green function
is obtained simply by replacing i�n with �+ i! (! is a
positive infinitesimal). Thus, we obtain

��I+�t�� = e−i�tHR�n��K−�−n��K+��

× 1
�− �KI + i!

(174)

where the radio frequency stimulating the resonance is
rewritten by �0. The magnetic susceptibility �+− thus
becomes

�+−��� = ��n��K−�−n��K+��
1

�− �KI + i!

� = e−i�tHR (175)

whose imaginary part is

� ′′
+−��� =−���n��K−�−n��K+�����− �KI � (176)

This gives the sharp function-type energy spectrum. We
have no line width or the relaxation time, and states are
stationary.

7.5. Interacting; Normal
In the interacting system, G0 in Eq. (169) has to be
replaced by �, including the interaction, which in the
present case is the spin–spin interaction between nuclei
and electrons, as has been given in Eq. (157),

�KM−1
M ��n� = 1
�

∑
�n

�KM ��n��KM−1��n −�n� (177)

where, for instance,

�KM ��n� = ���0
KM ��n��−1−#KM����−1 (178)

� being the interaction energy.
Our procedure is as follows. The two Green functions

with the self-energy part are evaluated. Combining them
gives the retarded Green function � for estimating the
magnetic susceptibility.

The most important (divergent) self-energy part of this
self-energy is due to the ring diagram shown in Figure 2.
The problem is to examine how the energy of the nucleus
propagator (unequal-dashed line) is changed by the ring
diagram of the electron (full line). That is to say,

���n�−1 = ���n�0+#���

#��� =−�K�2� ��n�� ��n +�� (179)

ρ

M

M–1

λ

ω

ρ + ω

m

m + 1

ω

Fig. 2. Self-energy part ���n�.

where � is the electron propagator, and the minus sign is
due to the fermion loop. The self-energy part includes the
coupling terms, where

�K�2 = �M �I+�M −1��m−1�S−�m��2
×���K�R��k�r��F �R
 r���k′�r��K′ �R���2 (180)

and the minus sign is due to a Fermion loop. The ring
diagram is calculated as follows:

�km��n��km−1��n +��

=∑
�n

1
i�n − �km

· 1
i�n +�− �km+1

=∑
�n

(
1

i�n − �km

− 1
i�n +�− �km+1

)
1

�− �km+1+ �km

= �n��km�−n��km+1��
1

�− �km+1+ �km

(181)

The lattice (electron) gets � from a nucleus to lift the elec-
tron spin from m to m+ 1, and at the other vertex, the
inverse process occurs. This looks like the radiation pro-
cess in the photochemistry. We thus have the self-energy
part of �K�M−1
M ,

#K�M−1
M ��n� = �K�2�n��km�−n��km+1��
1

�− �ks

(182)

where
�ks = �km+1− �km

Another propagator �K�M , has the self-energy part
#K�M
M−1��n�. This is built by replacing �n + � with
�n −� in Eq. (181) Figure 2.

#K�M
M−1��n�

= �K�2�n��km�−n��km−1��
1

�− �km−1+ �km

= �K�2�n��km�−n��km−1��
1

�− �ks

≈ �K�2�n��km+1�−n��km��
1

�− �ks

(183)
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We now turn to the evaluation of the propagator
�K�M−1
M ���:

�K�M−1
M ��n�

= 1
�

∑
�n

�KM ��n��KM−1��n−�n�

= 1
�

∑
�n

�i�n−�KM −#KM−�−1

×�i�n−i�n−�KM−1−#K�M
M−1�
−1

= 1
�

∑
�n

{
1

i�n−i�n−�KM−1−#KM−1

− 1
i�n−�KM −#KM

}

×
{

1
i�n−�KM−1−#KM−1+�KM +#KM

}
=�N ��KM �−N ��KM−1��

×
{

1
i�n−�KI +#KM −#KM−1

}
(184)

Here,
�KI = �KM − �KM−1

and the self-energy parts are disregarded in obtaining the
particle density. We can see that the additional terms in
the denominator modify the line shape.
If we put i�n → � + i!, we can obtain the retarded

Green function, whose imaginary part gives the line shape:

D��� ∼
{

1
�+ i!− �KI +#KM −#KM−1

}

=
{
P
(

1
�−−#KM−1�KI

)

− i����− �KI +#KM −#KM−1�

}

= i(Im)

(Re)2+ (Im)2
(at resonance point) (185)

The line shape is now changed from the � function type
to the Lorentz type, as expected.

8. INTERACTING; SUPERCONDUCTOR
8.1. The Extended Nambu Spinor
Now, we investigate how the line shape obtained above is
further modified in a superconductor. The electron prop-
agators in the previous section are replaced by those
in a superconductor. They have already been studied in
Section 3 and are presented here in a new fashion adequate
for the following investigation. As has been done by BCS,
let us consider the attractive twobody potential g, which is
assumed constant for simplicity, and further keep in mind
the Cooper pair. The Hamiltonian

Hel =
{

�kc+
kck +

1
2

gc+
kc+

−k�c−k�ck

}
(186)

where �k is the orbital energy, includes the Zeeman
energy in the present case.
Now we use the extended Nambu representation of

Eq. (137),

ck =

⎛
⎜⎜⎜⎜⎜⎝

ck

c+
−k�

c+
−k

ck�

⎞
⎟⎟⎟⎟⎟⎠ 
 c+k = (

c+
k c−k� c−k c+

k�

)
(187)

with the equal-time commutator:

�ck
 c+k′ �+ = 1�kk′ (188)

In these terms, the Hamiltonian is rewritten as

Hel = �kc
+
k #3ck +

1
2

g�c+k #+ck��c
+
k′#

−ck′� (189)

where �k is the diagonal matrix of �� :

�k =

⎛
⎜⎜⎜⎜⎜⎝

�k

�−k�

�−k

�k�

⎞
⎟⎟⎟⎟⎟⎠ (190)

Let us define

#3 =
(

�3 0

0 −�3

)

 #+ =

(
�+ 0

0 −�−

)

#− =
(

�− 0

0 −�+

) (191)

with

�3 =
(
1 0

0 −1

)

 �1 =

(
0 1

1 0

)

 �2 =

(
0 −i

i 0

)

�+ = 1
2

��1+ i�2�
 �− = 1
2

��1− i�2� (192)

As for the electron–electron interaction, only those for the
Cooper pairs are selected; namely, #+ selects a Cooper
pair in the particle state, and #− in the hole state.

8.2. Green’s Function
Here, the discussions done in Section 4 are repeated
briefly. The above Hamiltonian is invariant under the scale
transformation. Then we have a current conservation, espe-
cially the charge conservation in the static state (Noether’s
theorem). If we have any quantity which does not com-
mute with this invariant charge, we can expect a phase
transition (the Goldstone theorem).
The charge proportional to

�c+
k�ck�� =

∑
k>0

�c+k #3ck� (193)
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is invariant under the rotation about the #3 axis in the
space spanned by #3, #+ and #−. Observing that

�#3
 #±� =±2#± (194)

suggests the phase transitions along the #± directions.
If we define

c̄= c+#3

as has been done in Section 3, the discussions parallel to
those there will be possible in the following. However, this
is not employed in this case.

The phase transition cannot be achieved by the pertur-
bational approach, but the effective Hamiltonian giving the
phase transition should be included at the beginning. For
example, the modified Hamiltonian

H0 = c+k ��k#3+�#++!#−�ck

H int = 1
2

g
∑
kk′

��c+k #+ck� · �c+k′#−ck′�

− c+k ��#++!#−�ck� (195)

where � and ! are the so-called gap energies which are
assumed to be independent of k for simplicity. Note that
the Hamiltonian H0 is already symmetry-broken. Here,
we adopt a conventional method. In what follows, H int is
neglected, i.e., we start from the Green function due to the
effective Hamiltonian and then take the interaction (158)
into account. At this stage, we may expect the result that
will be obtained in such a manner that the normal and
superconducting states contribute additively.

The temperature Green function with the imaginary
time � is defined as

G0
kk′��� =−�T��ck���c+k′ �� (196)

where �· · · � = Tr��G · · · �. The equation of motion
of G0

kk′ is

��G0
kk′ ���

=−�� ������ck���c+k′�0��−��−���c+k′�0�ck�����
= ������ck���
 c+k′ �0��+�+�T��ck���
 H0�−
 c+k �0��
= �kk′ + ��k#

3+�#++!#−�G0
kk′ (197)

In the course of the above derivation, the commutator in
Eq. (199) was used.

We make the Fourier transformation,

G0
kk′��� = 1

�

∑
�n

e−i�n�G0
kk′��n�
 (198)

where � = kBT and kB is the Boltzmann constant. Then
the equation of motion becomes

�i�n +�k#3+�#++!#−�G0
kk′ ��n� = �kk′ (199)

Namely,

G0
kk′ ��n� = 1

i�n −�k#3−�#+−!#−

= �kk′

{
i�n +�k#

3+�#++!#−

�i�n�2−E2
k

}
(200)

where
E2

k = �2
k +�! (201)

8.3. Spin Dynamics
The propagator in Eq. (200) is the 4× 4 matrix. If we
ignore � and !, this is reduced to the normal propagator.
We have already tried this simple case.
Now we assume the terms responsible for the super-

conductivity as a perturbation. Namely (� is the electron
propagator),

� ��n� = i�n +�k#
3+�#++!#−

�i�n�2−E2
k

= i�n + �k#
3

�i�n�2+ �2
k

+ �#++!#−

�i�n�2+ �2
k

+· · · (202)

It is helpful to separate this relation into components and
to manipulate each one individually. Noticing that

�0+�3 = �↑ +�↓

we have, for example by operating �↑ followed by Tr,

� ↑��n� = i�n +�k#
3+�#++!#−

�i�n�2−E2
k

= 1
i�n − �k↑

+ �+!

�i�n�2+ �2
k

+· · ·

= 1
i�n − �k↑

+ �+!

2�k↑

(
1

i�n − �k↑
− 1

i�n + �k↑

)
+· · · (203)

In order to get the self-energy part of the nuclear prop-
agator, we have to evaluate

#k�M−1
M��� = K2 1
�

∑
�n

� ��n�� ��n +�� (204)

The first-order term has already been evaluated in
Eq. (181). Then we have to carry out the complicated
manipulation due to the second term of the last line in
Eq. (203). However, the combinations other than those sat-
isfying the resonance condition � ∼ �ks (see Eq. (182))
should give a small effect which is to be neglected.
We then consider that the procedures of the previous

section need not be repeated, and we are allowed to mul-
tiply the results there by the factor ��+!�/2�k↑ as the
perturbing correction or the superconducting effect.
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8.4. Conclusion
If we review the present investigations from the viewpoints
of the line shape problem in the magnetic resonance, three
cases are clearly distinguished. In the noninteracting case,
the line shape is written in terms of the delta function. In
the interacting case of the normal phase, it is presented
by the Lorentz-like function, and in the superconducting
phase it is further multiplied by a coherent factor; whereas
the statistical factors referring to the nuclear states never
change throughout.
For a superconductor, the present theory has almost

nothing to give more than the current one has done.
However, the theory is not merely to reproduce the exper-
imental result, but to predict the mechanism hidden in
observations, in such a way that the manipulations reveal
step by step the working mechanism inside the matter. We
might be satisfied with a slightly deeper understanding of
the superconductivity.
Among various opinions we give, as an example,

Scalpino’s.29 He pointed out three possibilities regard-
ing the loss of the T1 enhancement in the copper oxide
superconductor:

• The d-wave single-particle density of states has loga-
rithmic singularities, rather than the square-root singularity
for the s wave gap.
• The coherent factor for the quasiparticle scattering

vanishes for k ∼ ��
 �� for a dx2−y2 gap.
• The inelastic scattering acts to suppress the peak just

as for an s wave.

Scalpino had the opinion that the theory of superconduc-
tivity is already so well furnished that other fundamental
ideas beyond the original BCS one are almost needless,
except for some smart equipment. As the phenomena
observed in the copper oxide superconductor are rather
qualitative and fairly clear-cut, the explanation for them
must be simple. It is expected that a quantum-chemical
speculation could make this possible.
Let us address scalpino’s opinion. The divergent char-

acter of Eq. (154) seems a merely mathematical problem.
The difference between Eq. (185) and that (which will
be obtained) for the superconducting case is the coher-
ent factor, (203). In the case of a BCS superconductor,
it holds that Ek � � so that the enhancement of the spin-
lattice relaxation time T1 is observed due to this factor,
which leads to the superconductivity. However, in the case
of a high-temperature superconductor, �
 ! ∼ Ek, as has
been seen in the previous chapter, we cannot observe the
sharp onset of superconductivity. Then we miss the coher-
ent effect.
There is presumably a simpler reason why the T1

enhancement is not observed. In copper oxide, electrons
responsible for superconductivity are probably the d elec-
trons; then we have the vanishing interaction term if it is
the Fermi contact term between a nucleus and an electron–
say, F �R
 r� ∼ ��R− r� in Eq. (159).

9. GINZBURG–LANDAU THEORY FROM THE
BCS HAMILTONIAN

The macroscopic quantum theory of superconductivity has
been given by Ginzburg and Landau.9 This looks rather
phenomenological; however, since a microscopic justifica-
tion has been provided by Gorkov and others,16
30 it has
a substantial foundation. We also reviewed the GL the-
ory, in the introduction of Section 4, from the viewpoint
of Landau’s general theory of phase transitions. It is cru-
cial that the Lagrangian of the system is written as the
fourth-order function of the order parameter � , which is
the electron field. If the coefficients of the second- and
fourth-order terms are suitably chosen, the new ground
state shapes a champagne bottle, or a Mexican hat is built.
If electrons moves on this flat route around the top, the
derivative of the orbital vanishes or the kinetic energy van-
ishes, which implies that the wave function is rigid. We
may say that the electron mass is effectively zero. We thus
have the current only due to the vector potential, i.e., the
diamagnetic current. This causes the Meissner effect.
The GL theory is quite useful for applications, since

the microscopic theory by itself is too complicated for
manipulating large-scale problems. If we can solve the GL
equation for a real problem under an appropriate bound-
ary condition, various information on this system can be
obtained.10 The macroscopic wave function or GL order
parameter � is related to the gap function and is under-
stood as the field of Cooper pairs. The parameters in the
GL equation are also written in the microscopic terms or
by the experimental values. In Ref. [28], the GL function
� is derived directly from the BCS Hamiltonian, not via
the gap function or the anomalous Green function related
to the gap function. The electron–electron interaction com-
posed of the four fermion operators is changed by the
Hubbard-Stratonovitch transformation to an auxiliary com-
plex boson field �, in which electrons behave as if they
were free. Using the path-integral method, we can carry
out the integration up to the quadratic terms of the elec-
tron operators. If we carefully analyze the resulting effec-
tive Lagrangian for the boson field, we will find that this
boson field, which is described by a complex function,
suggests a phase transition; the condensation arises in par-
ticles described by the real part of the boson field, while
particles in the imaginary (or phase) part turn out to be
massless Goldstone bosons. It is then clear that the boson
field is to be the GL order parameter. In the course of
analysis, the concept of supersymmetry is effectively used.

9.1. BCS Theory
We assume the classical field of an electron is described
by the Grassmann algebra or the anticommuting c-number;
namely, the creation and annihilation operators a∗

k and ak

are treated as anticommuting c-numbers. The BCS Hamil-
tonian is written as

H = H0+Hint
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H0 =
∑
k�

�k� a∗
k�ak�

Hint =
∑
kk′

−gk−k
−k′k′ �a
∗
k↑a∗

−k↓��a−k′↓ak′↑�

gk−k
k′−k′ > 0 (205)

and

−gk−k
−k′k′ =
∫

dr1dr2 �∗
k↑�r1��

∗
−k↓�r2�v�r1
 r2�

×�−k′↓�r2��k′↑�r1� (206)

where v�r1
 r2� is the effective coupling giving an
attractive character for the electron–electron interaction.
Here, the summation convention that repeated indices
imply summation is used. This is helpful in facilitat-
ing the manipulation. We would consider that the BCS
Hamiltonian is an attractive interaction between Cooper
pairs rather than an attractive interaction between elec-
trons, (Figs. 3 and 4). In the following, it is assumed that
�k� is independent of spin and gk−k
k′−k′ is independent not
only of spin but also, finally, of k and k′.

Let us investigate the partition function

Z = Tre−��H0+Hint� (207)

This is expressed by the use of the path-integral
method.31
32 The spirit of the Feynman path-integral is
sometimes written as follows: the (imaginary) time interval
0→ � is sliced into numerous pieces, each being labeled
by �p. Since each slice is made arbitrarily small, the quan-
tum effect arising from the commutation relation can be
neglected, so that the operators are regarded as c-numbers
in each slice. Instead, this c-number function can take any
value even in the small time slice. Connecting these pre-
cise values from 0→�, we can draw all of the paths in this
interval. If we count the effects from all of these paths, the
quantum-mechanical result of the subject can be obtained.
However, this statement seems rather misleading.

Feynman’s path-integral is the third method of
quantization.33 We begin with the classical treatment, and
then if we apply the path-integral procedure to it, the quan-
tum effect is certainly taken into account. This corresponds
to the conceptual development from the geometric optics
to the physical optics. The Bose system (in the quantum-
mechanical sense) is written by an ordinary c-number, but

Fig. 3. In the BCS model, superconductivity arises due to the attractive
electron–electron interaction which appears owing to the scattering by
phonons.

Fig. 4. Excitation of the ground state of a Cooper pair demonstrates the
presence of the energy gap �, which is (very approximately) isotropic in
the momentum space.

the Fermi system should be described by a Grassmann
number. Thus, we do not worry about the commutation
relations of field operators and obtain

Z = Tr e−�Ĥ

= lim
N→�

∫ N∏
p=1

da∗��p�da��p�

×exp
∑

p

���ȧ∗��p�a��p�−H��p��
 �=�/N

=
∫
�a∗����a���exp

∫ �

0
d��a∗

k� ����−�� −�k� �ak� ���

+gk−k
−k′k′a
∗
k↑���a∗

−k↓���a−k′↓���ak′↑���� (208)

where

�a∗����a��� =
�∏

p=1

da∗
k���p�dak���p� (209)

9.2. Hubbard-Stratonovitch Transformation
Difficulty lies in the quartic term of the electron–electron
interaction. Let us define

B∗
 = a∗

k↑a∗
−k↓ and B′ = a−k′↓ak′↑ (210)

so as to write, in each time slice,

gk−k
−k′k′a
∗
k↑a∗

−k↓a−k′↓ak′↑ = g′B∗
B′ (211)

This is simplified by using the identity called the
Hubbard.Stratonovitch transformation.34 We introduce a
complex boson field �, since �B�∗ 	= B:

1 =
∫ �

−�
d�∗ d�e−��∗�

=
∫ �

−�
d�∗ d�e−���∗−i

√
g/�B∗���+i

√
g/�B�

=
∫ �

−�
d�∗ d�e−��∗�+i

√
g��B∗�−B�∗�e−gB∗B

namely∫ �

−�
d�∗ d�e−��∗�+i

√
g��B∗�−B�∗� = egB∗B (212)
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where we have the definition

d�∗d� = d�Re��d�Im��a (213)

We cannot apply this identity for the quantum-
mechanical partition function because of the noncommu-
tativity of the operators involved, but now we have no
trouble since, in the present path-integral treatment, oper-
ators turn out to be c-numbers. Then Eq. (208) becomes

Z =
∫ ∫

�a∗����a��� d�∗��� d����

×exp
∫ �

0
d��−a∗

k� ����−1
k� ���ak� ���−��∗

����′ ���

+ i
√

�gk−k
′a∗
k↑���a∗

−k↓����′ ���

− i
√

�g
−k′k′a−k′↓���ak′↑����∗
���� (214)

with
�−1

k� ��� =−�� − �k�

The essential feature of this expression is that the oper-
ator appearing in the exponent in Eq. (214) is quadratic
only in ak and a∗

k, so that the evaluation with respect to
the fermion variables is similar to the evaluation for the
noninteracting system, in which particles are moving in an
effective boson field �k. Equation (214) shows that, inside
the exponent, Z is a weighted average of the second and
third terms over the field �.

9.3. Fourier Transform
The Fourier transformation with respect to � is per-
formed as

ak��� =∑
�n

ei�n�ak��n�
 ���� =∑
�n

ei�n����n�

�n = �2n+1��/�
 �n = 2n�/� (215)

Note that �n refers to a fermion, and �n to a boson.
Using the above and the relation

∫ �

0
d�ei��n−�m�� = ��nm (216)

we have

Z =
∫
�a∗��n��a��n���∗��n�����n�

× exp
∑
�n�n

�−�a∗
k���n��k� �i�n�−1ak� ��n�

−���∗
��n��′ ��n�

+ i
√

�gk−k
′a∗
k↑��n +�n�a

∗
−k↓����′ ��n�

− i
√

�g
−k′k′ak′↓��n�a−k′↑��n +�n��∗
��n�� (217)

aActually, d�Rd�I = 1/2id�∗d�. The constants are adsorbed in the
normalization factor.

where �k��i�n� is Green’s function, given as

�k� �i�n� = 1
i�n − �k�

(218)

We can observe the following in Eq. (217): the third line
tells us that, at the vertex indicated by the coupling gk−k
′ ,
the boson field �′ sinks, and then the particle pair a∗

k↑a∗
−k↓

arises. The last line displays the reverse phenomenon. Note
the energy conservations at vertices.

9.4. Nambu Spinor
At this stage, we would rather use a spinor notation
due to Nambu11 that is very useful for investigating the
superconductivity:

ak =
(

ak↑

a∗
−k↓

)

 a∗k = �a∗

k↑ a−k↓�

a−k =
(

a−k↓

a∗
k↑

)

 a∗−k = �a∗

−k↓ ak↑� (219)

It is instructive to manipulate the complicated last line
in (217) in the present language: it has a structure such
that

�′a∗
k↑a∗

−k↓ −�∗
a−k′↓ak′↑

= �′�a∗
k↑ a−k↓�

(
1

0

)(
0 1

)( ak↑

a∗
−k↓

)

−�∗
�a∗

−k′↓ ak′↑�

(
0

1

)
�1 0�

(
a−k′↓

a∗
k′↑

)

= �′ a∗k�
+ak +�∗

a
∗
−k′�

−a−k′

The positive sign in the second term is due to the
Grassmann character of ak↑ and a−k↓. Also,

a∗
k��kak� = a∗�3

k �kak (220)

since �k = �−k.
In the above, the Pauli matrices and related ones are

rewritten as

�1 =
(
0 1

1 0

)

 �2 =

(
0 −i

i 0

)

 �3 =

(
1 0

0 −1

)

�+ = 1
2

��1+ i�2� =
(
0 1

0 0

)

�− = 1

2
��1− i�2� =

(
0 0

1 0

)
(221)

Equation (217) is now written as

Z =
∫∫

�a∗�a��∗�� exp
∑
�n�n

�−���∗
�������

+�a∗k��n��i�n − �k�
3�ak��n�
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+i�
√

�g
k′−k′���n�a∗k′��n +�n��+ak′��n�

+i�
√

�g′
 k−k�∗
′��n�a∗−k��n�

×�−a−k��n +�n�� (222)

We can integrate with respect to fermion variables: note
that31 ∫

dz∗dze�z∗Az� = detA for fermion∫
dz∗dze�z∗Az� = �detA�−1 for boson (223)

Using the upper one, we can immediately obtain

Z =
∫
��∗�� exp

∑
�n

{
−���∗

�������

+det

∥∥∥∥∑
�n

��i�n − �k�
3�+ i�

√
�g
k′−k′ ����n��+

+�∗
′��n��−�

∥∥∥∥
}

(224)

where we have made use of a symmetry property,
g
k′−k′ = g′
 k−k, and � · · · � stands for a matrix. This can
be also rewritten as

Z =
∫
��∗�� exp−�W ��� (225)

with the effective action for the boson field

W ��� = �
∑
�n

�∗
��n����n�− 1

�

∑
�n

Tr log�

×
{

�i�n − �k�
3�+ i

∑
�n

√
u
k����n��+

+�∗
��n��−�

}
(226)

where the relation log ·det = Tr · log and the simplified
notation

u
k = �g
k′−k′ = �g′
 k−k (227)

have been used.
By employing the steepest descent method, we can

obtain a particular �, by optimizing W ���, which will be
denoted as �̄. For example, by differentiating W ��� with
respect to �∗

���n�, we have

�W ���

��∗
�

= �� −
1
�

∑
�n

Tr

× i
√

u�
k�
−

�i�n − �k�
3�+ i

√
u
k����n��+ +�∗

��n��−�
= 0

(228)

We thus obtain

��̄���n� = 1
�

∑
i�n

√
�u�
ku
k� · �̄

�i�n�2−E2
k

(229)

where

E2
k��� = �2

k +
√

�u
ku′ 
 k��̄∗
��n��̄′ ��n� (230)

Note that the field strength �∗
��n��′��n� has the

dimension of energy. In obtaining Eq. (229), we first ratio-
nalize the denominator, and then the Tr operation on �’s is
carried out. The numerator that remains is the coefficient
of Tr�+�− = 1. A similar equation is obtained for �∗.
Equation (229) corresponds to the gap equation.
Now we employ an approximation in the rest of this

study where, as was mentioned at the beginning, u
k = u
(a positive constant). Thus, to the first approximation, � is
nearly constant:

�

u
= 1

�

∑
�n

1

�i�n�2−E2
k

(231)

Doing the frequency sum, we get

1
�

∑
�n

1
i�n −x

=±n�x� (232)

where n�x� is the Fermi or Bose function according to
whether �n is odd or even, respectively, and we obtain (for
fermions)

�

u
= n�Ek�−n�−Ek�

2Ek

= tanh��Ek/2�

2Ek

(233)

From the above relation combined with Eq. (229), we can
estimate �̄, which corresponds to the gap energy.

9.5. Critical Temperature
It is straightforward to obtain the critical temperature, Tc,
for the superconductivity from Eq. (233).15 Here, it is
repeated for completeness. In the limit T → Tc, the gap,
or � in the present case, disappears. The summation over
k is approximately replaced by the integration

2�

uN �0�
=
∫ �D

0

d�

�
tanh

�

2kBTc

(234)

where N �0� is the state density at the Fermi surface, and
the cutoff parameter �D is, in the case of the BCS the-
ory, the Debye frequency of phonons associated with the
attractive interaction between electrons.
The integration in Eq. (241) proceeds as follows:∫ �D

0

d�

�
tanh

�

2kBTc

=
∫ �C �D/2

0

dz

z
tanhz �z = ��c/2�

= log ztanhz�
�c�D/2
0 −

∫ �c�D/2

0
dz logzsech2z

≈ log
�c�D

2
−
∫ �

0
dz logzsech2z

(
tanh

�c�D

2
≈ 1

)

= log
�c�D

2
+ log

4e�

�
(235)
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Combined with (233), this yields

log
�c�D

2
= 2�

uN �0�
− log

4e�

�
(236)

where � = 0�5772 is Euler’s constant. This relation will be
used in the next section. Simple rearrangements yield

Tc ≈ 1�13�De−2�/N �0�u (237)

9.6. Temperature Dependence of �
For the later investigation, we derive a temperature depen-
dence of � near the critical temperature.16 Coming back
to (231) and restoring the hidden summation with respect
to k, we can rewrite this as

2�

uN �0�
= 1

�

∑
�n

∫ �D

0
d�

1
�i�n�2− ��2+u���2�

(238)

Considering that ���2 � 1 near the critical temperature,
we expand the above as

2�

uN �0�
= 1

�

∑
�n

∫ �D

0
d�

{
1

�i�n�2− �2
+ u���2

��i�n�2− �2�2

+ �u���2��2
��i�n�2− �2�3

+· · ·
}

(239)

For the convergent integrals which are the second and third
terms, the integration limit is extended to infinity, and then
we obtain (putting � = � tan �)

2�

uN �0�
=

∫ �D

0

d�

�
tanh

��

2
+ 1

�

�

4
u���2

∑ 1
�3

n

+ 1
�

3�

16
�u���2�2

∑ 1
�5

n

+· · · (240)

The integration of the first term on the right-hand side,
which is similar to (235), has � instead of �c. Then,
using (236), we have, in the lowest approximation,

log
�c

�
= 1

�

�

4
u���2

∑ 1
�3

n

+· · · (241)

Using
�∑
0

1

�2n+1�p
= 2p −1

2p
$�p� (242)

in (7.36), we have the temperature dependence of �,

√
u���2 = �kBTc

√
16

7$�3�

√
1− T

Tc

$�3� = 1�202

(243)
which is the same as that of the energy gap.15

9.7. Dynamics of the Boson Field; Symmetry Breaking
The boson field ���n�, which satisfies (227), is written
as �̄, so that

���n� = �̄ + �� − �̄� = �̄ +%��n� (244)

Now %��n� becomes a physical or fluctuation compo-
nent in solid-state physics. Our aim is to find the effective
Lagrangian or Hamiltonian for it.
In order to find the terms proportional to %��n�

in (244), we first observe that

���n��++�∗
��n��−

≡ ���n� · � = ��a�
 ��n���a� a = 1
2

= �̄��n� · � +%��n� · � (245)

Expanding W ��� in (226) in %��n� and noticing that,
upon the Tr operation, the odd terms with respect to � will
vanish. We have

W ��∗
 ��

= �
∑
�n

�∗
� −

1
�

∑
�n

Tr log��i�n − ��3− i
√

u��̄ · ��

− 1
�

∑
�n�n

even∑
n

1
n
Tr����n�i

√
u�%��n� · ���n (246)

where

�k��n� = i�n + �k�
3+ i

√
u��̄ · ��

�i�n�2−E2
k

(247)

Note that now the propagator includes the mean-field
effect. What we are interested in is the second line of
Eq. (246).
The term with n = 2 is precisely written as

−1
2�

∑
�n�n

Tru�k��n��%�a�
 ��n���a���k+��n +�n�

× �%∗�a′�
 ��n���a′��

=∑
�n

u�%��n��2P��n� (248)

where careful manipulations about �’s are required. Except
for the explicit ones combined with %’s, we have �’s
inside �’s. Let us call the terms with a = a′ = 1 and a =
a′ = 2 the direct interactions, and the terms with a = 1,
a′ = 2 and a = 2, a′ = 1 the cross interactions. We then
have

P��n� = −2
�

∑
�n

i�n�i�n + i�n�− �k�k+ +u�̄∗ · �̄
��i�n�2−E2

k ���i�n + i�n�
2−E2

k+�

(249)
where the first two terms in the numerator arise from
the direct interaction and the third from the cross
interaction. Here, use has been made of the fact that
Tr �3�+�3�− = −1. Employing (231), we can carry out a
lengthy but not difficult calculation of P��n�. Note that
an even frequency �n has nothing to do with obtaining the
Fermi functions. The result is

P��n� = −n�Ek��1−n�Ek+��
Ek+ −Ek

�i��2− �Ek+ −Ek�
2

×
[

Ek+Ek − �k+�k +u��̄∗ · �̄�

Ek+Ek

]
(250)
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Here, we again note that, in the square brackets, the first
two terms are obtained from the direct interaction and the
third term from the cross interaction.

It might be convenient, for the later investigation, to do
the frequency sum for P��n�:∑

�n

Ek+ −Ek

�i�n�2− �Ek+ −Ek�
2

= �
1
�

∑
�n

1
2

[
1

i�n − �Ek+ −Ek�
− 1

i�n + �Ek+ −Ek�

]

= �

2
�−nB�Ek+ −Ek�+nB�−Ek+ +Ek��

= −�

2
coth

[
��Ek+ −Ek�

2

]

where nB is the Bose function, and use of Eq. (232) has
been made for the even frequency �n. Then Eq. (250)
becomes∑

�n

P���n� = n�E��1−n�E+���
�

2
coth

[
��E+� −E�

2

]

×
[

E+�E − �+�� +u��̄∗ ·��

E+�E

]
(251)

We then obtain the effective action for � up to the sec-
ond order in %, as follows:

W��∗
 ��

= �
∑
�n

�∗
��n����n�− 1

�

∑
�n�n

Tr

× log�−��i�n − �k�
3−√

u�̄��n� · ���

−n�E��1−n�E+���
∑
�n

Ek+ −Ek

�i��2− �Ek+ −Ek�
2

×
[

Ek+Ek − �k+�k +u��̄∗ · �̄�

Ek+Ek

]
(252)

9.8. Instability
In order to discuss the dynamics of %��n�, we must
obtain an expression for the action of %��n� similar to
that for a��n� given in the exponent of Eq. (208). Since
we are interested in the energy region much lower than that
for the electronic excitation �E+� −E�, the denominator
of P��n� in Eq. (250) is expanded as

1
�i��2− �Ek+ −Ek�

2

= −1
�Ek+ −Ek�

2

[
1+ �i�n�2

�Ek+ −Ek�
2
+· · ·

]
(253)

Substituting this into P��n� in Eq. (250) and taking up
the terms of the order of �i��2 in the above, we have

�i�n�2+u��̄∗�̄�
�Ek+ −E��2

Ek+Ek

+· · · (254)

The second term is a small and complicated, but positive
quantity. We thus obtain the effective Lagrangian for % up
to the second order of %∗%:

�B ∼ %∗�i�n�2%+!%∗%+· · · 
 ! > 0 (255)

In the above, i�n is replaced by �/�� in the future. At this
stage, the details of ! are immaterial except that this is
positive.
To put forward the problem, we need the term propor-

tional to %∗%∗%%. This is obtainable from the term with
n = 4 in Eq. (246). Without any detailed calculation, we
may presume a positive quantity for this, noted by �2.
Then the total Lagrangian of the boson field becomes

�B ∼ %∗�i�n�2%+!%∗%−�2%∗%∗%% (256)

This looks like the Lagrangian that Ginzburg and
Landau have used for investigating the superconductivity.
We thus expect a kind of phase transition. Let us optimize,
with respect to %∗, the potential part of Eq. (256):

� =−!%∗%+�2%∗%∗%% (257)

��

�%∗ = −!%+2�2%∗%%

= �−!+2�2%∗%�% = 0 (258)

If % = 0, nothing happens; while, in the case of % 	= 0, it
is possible that

%∗% = !

2�2
≡ ā2 (259)

We now put

% = ��+ ā�ei� (260)

Namely, only the radial part is affected. This choice is
allowed in the spirit of the unitary gauge. If we insert this
into (257), it follows that

� = �2���+ ā�2− ā2�2−�2ā4

= �2�%∗%− ā2�2−�2ā4 (261)

Observing the final result, we realize that the potential
becomes minimum at �%� = ā; namely, at this position
apart from the origin, �%� = 0, which corresponds to the
HF state. The mass of the field % is given by the coeffi-
cient of %∗%, which is 4�2ā2 for a particle of the � field,
while the term involving � is completely lost. That is to
say, the particle in the � field is massless, and it is called
the Goldstone boson. This is due to the occurrence of the
infinite degeneracies along the direction perpendicular to
the � coordinate.
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9.9. Supersymmetry
The total Lagrangian of the system is

�tot =�e +�B +�int (262)

where

�e = a∗i �i�n − �i�
3�ai

�B =−%̇∗%̇−�2�%∗%− ā2�2

�int =−i
√

u�%a∗�+a+%∗a∗�−a� (263)

In the above, the second line is obtained from Eqs. (256)
and (261), and then the third line from Eq. (245) supplied
by necessary terms, and a compact notation is used, and
the immaterial constant terms are omitted. The � in the
above is, strictly speaking, the Lagrangian density, and the
action which we are interested in is the space–time integral
of the Lagrangian density, so that the partial integration
with respect to � (after the replacement i�n → �� ) gives the
first term with the minus sign. If we define the momentum
conjugate to %,

& = ��tot

�%̇
=−%̇∗ &∗ = ��tot

�%̇∗ = −%̇ (264)

the total Hamiltonian for the boson field is obtained as

�tot = &∗%̇+&%̇∗ −�

= &∗&+ i
√

u�a∗%�+a+a∗%∗�−a�

+�2�%∗%− ā2�2 (265)

The momenta, &∗ and & conjugate to %∗ and % respec-
tively, have the properties

�&
 f �%∗
 %��− = �

�%
f �%∗
 %�

�&∗
 f �%∗
 %��− = �

�%∗ f �%∗
 %� (266)

since we are now dealing with the classical operators in
the framework of the path-integral formalism.
Let us turn to a supersymmetric treatment.35–37 The

fermionic composite charge operators are defined as

Q∗ = &∗a∗ − i
√

u�%∗%− ā2�a∗�−

Q = &a+ i
√

u�%∗%− ā2��+a (267)

First of all, we have to manipulate the commutator

�Q∗
 Q�+ = �&∗a∗ − i
√

u�%∗%− ā2�a∗�−

×&a+ i
√

u�%∗%− ā2��+a�+ (268)

Straightforward calculations give

�&∗a∗
 &a�+ = �&∗a∗
a�+&−a�&
 &∗a∗�+

= &∗�a∗
a�+&−a�&
 &∗�+a
∗ = &∗&

Here, for the Grassmann numbers, use has been made of
the relation

�a∗
a�+ = �

�a
a−a

�

�a
= �a

�a
+a

�

�a
−a

�

�a
= 1

Further,

�&∗a∗
 i
√

u�%∗%− ā2��+a�+

= �&∗a∗
 i
√

u�%∗%− ā2��−�+a

− i
√

u�%∗%− ā2���+a
 &∗a∗�+

= �&∗
 i
√

u�%∗%− ā2��−a
∗�+a

− i
√

u�%∗%− ā2��−&∗�a
a∗�+

= i
√

u%a∗�+a

and

�i
√

u�%∗%− ā2�a∗�−
 &a�+

= �&a
 i
√

u�%∗%− ā2��−a
∗�−

−i
√

u�%∗%− ā2��a∗�−
 &a�+

= �&
 i
√

u�%∗%− ā2��−aa
∗�−

−i
√

u�%∗%− ā2��−&�a∗
a�+

= i
√

u%∗aa∗�− = −i
√

u%∗a∗�−a

The final term must be symmetrized:

�a∗�+
 �−a�+ → 1
2

��a∗�+
 �−a�++ �a∗�−
 �+a�+� (269)

= 1
2

���0
 a∗�
 �0
 a��++ ��b
0�
 �b∗
0��+�

= 1
2

(
�b
 b∗�+ 0

0 �a∗
 a�+

)
(270)

= 1
2
1 (271)

In the second line, b and b∗, which are used in literature,
are defined.
We thus obtain the fundamental relation in the super-

symmetric quantum mechanics,

� = �Q
 Q∗�+ (272)

if we endow, to the constant �2 in (264), a specified value,

�2 = 2u (273)

which is reasonable.37 However, as mentioned before, this
had to be obtained analytically from the term with n =
4 in Eq. (252). If it is assumed that the present system
is the case of supersymmetry, we can avoid this tedious
calculation.
The nilpotency of the charge operators,

Q2 = 0
 �Q∗�2 = 0 (274)

is clearly preserved from a2 = 0 and �a∗�2 = 0. We have
thus completed a supersymmetric analysis.
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9.10. Towards the Ginzburg–Landau Equation
Now we can think about the GL equation. Since it con-
cerns only the static part of the condensed boson field, we
keep the first and third terms of Eq. (265). The first term
is the kinetic part, while the last term is the potential part:

�GL = &∗&−!%∗%+�2�%∗%�2 (275)

with

! = u��̄∗�̄�
�Ek+ −E��2

Ek+Ek

As usual, the coefficients of %∗% and �%∗%�2 in the GL
equation are a and b, respectively. It is crucial that a is
negative, which is given by −! in the present considera-
tion. The temperature dependence of ! is found through
u��̄∗�̄�, as in Eq. (265). This is exactly the same as that
obtained by Gorkov.30

9.11. Discussion
Some people seemed to be puzzled by the curious look
of the GL equation when it was published: the supercon-
ductivity being a macroscopic, thermodynamically stable
phase—why is it predicted by a Schrödinger-like wave
function, to which the microscopic phenomena are sub-
jected? Several years later, the microscopic theory was
established by BCS, and soon Abrikosov had successfully
correlated these two treatments. He made clear that the GL
function is deeply concerned with the gap function char-
acteristic of the superconductivity and is a wave function
describing the condensed Cooper pairs.

The superconducting state is certainly a stable ther-
modynamical state, and a phase transition from the nor-
mal state to the superconducting state is interpreted as a
long-distance correlation between the Cooper pairs. Yang38

developed a unified treatment of the phase transition in
terms of the density matrix. According to his treatment, the
onset of the superconductivity is understood in such a way
that the off-diagonal long-range order (ODLRO) of the
second-order density matrix has a nonvanishing value. This
concept is clearly related to London’s rigid function, the
quasiboson condensation being widely seen as a powerful
model of superconductivity and the variational wave func-
tion tried by BCS.3 Recently, Dunne et al.39 applied the
concept of ODLRO to argue the high-temperature super-
conductivity in copper oxide, where the attractive interac-
tion between electrons is assumed to have originated from
Friedel oscillations in the screened potential.

However, the previous presentation of Abrikosov looks
to be a detour, a complicated and tedious procedure in
which the condensed pair is characterized by an anomalous
temperature Green function which is difficult to manip-
ulate for beginners. Therefore, the direct way to reach
the GL theory from the BCS Hamiltonian should be
preferable. What we have done in the present investiga-
tion is the following: the auxiliary boson field driven by

the Hubbard–Stratonovitch transformation to eliminate the
quartic term of electron operators is just the GL function.
In conclusion, from the treatments used so far, the con-

ditions which are necessary for the occurrence of super-
conductivity are:
(1) The wave function which means the ground-state aver-
age of operators of a Cooper pair must be complex or
two-dimensional. If one of these two degrees of freedom
gets a new stable structure, the other degree of freedom,
whose direction is perpendicular to the former, offers the
infinite degeneracy. In the Nambu theory, the first refers
to the �1 direction, and the second to �2 in the fictitious
spin space.
(2) The electron ·electron interaction should be attractive,
otherwise the negative coefficient of %∗% in Eq. (275)
cannot be obtained. In the present consideration, we have
observed that this condition is established in the effective
electron.electron interaction of the system involving the
multiband structure.

However, we will discuss a little more the normal state
under the usual condition. In the normal species, the cou-
pling constant between electrons is intrinsically positive.
However, if we are interested in the exchange interaction,
i.e., the so-called Fock term with negative coupling, this
is met by condition 2. This is a short range interaction,
while the direct coupling is so strong as to overwhelm the
exchange interaction.
Let us turn to the behavior of the quartic electron oper-

ators. It is unexpected that these are grouped into the pair
operators of particle–particle and hole–hole, which do not
conserve the particle number. Thus, it is natural to group
them into a couple of particle–hole pairs. This choice
makes the auxiliary boson function real.
The Hamiltonian which satisfies the above two condi-

tions, looking like the BCS Hamiltonian, is the one with
the dipole–dipole interaction. The simplest case is that of
the intermolecular interaction due to the induced dipole–
dipole interaction with a coupling constant-d:

Hd =−d a∗
r b

∗
r bsas (276)

where, for example, a∗
r and b∗

r are the creation opera-
tors for a particle and a hole, respectively. If the elec-
tron.electron interaction is screened sufficiently, this may
be another possibility for the superconductivity of a molec-
ular complex.
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