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Abstract

We study the localization of an electron in a binary quantum system formed
by a pair of quantum dots (QDs). The traditional theoretical consideration
of such systems is limited to the symmetrical case when QDs in such double
quantum dot (DQD) are assumed identical in all respects. In this paper,
we model the effects of breaking QD similarities in a DQD by studying two-
dimensional (2D) DQDs as a double quantum well (DQW). This is done
by solving the Schr odinger equation, with parameters chosen to describe
an InAs/GaAs heterostructure. We calculate the energy spectrum of the
electron confinement and the spectral distribution of localized/delocalized
spatial states. Both symmetric and asymmetric QW shapes are considered
and their effects are compared. The effects of symmetry breaking is explained
within the framework of the two-level system theory. We delineate the QW
weak and strong coupling cases in DQW. In particular, we show that the
coherence in ideal DQW is unstable in the case of a weak QW coupling.
Within the framework of the proposed approach, a charge qubit realized on
a double quantum dot is discussed and, as an example, a qubit based on an
almost ideal DQD is proposed.

Keywords: Electron tunneling, Electron localization, Quantum wells,
Semiconductors, Charge qubit

1. Introduction

The goal of this paper is to explore the significance of symmetry breaking
on the stability of tunneling in binary quantum system, like quantum dots
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(QDs) or (QWs). The importance of such systems is due to their relevance
to building quantum computers. One of the main concepts employed for
quantum computer design is the spatial isolation of single electron in a double
quantum dot (DQD)[2, 3]. Charge qubit based on electron localization in the
left or right quantum dot of a DQD has been reported in Refs. [7, 8, 9, 10].
One of the main problems with quantum computing is the induction of qubit
errors. This issue seems to be inevitable, since quantum states of qubits are
sensitive to slight variations of temperature, tiny vibration, or stray photons,
even single photon. These can cause random change of the qubit state, which
gives non-controllable error. The state of neighboring qubits can also change
haphazardly as a QD can couple to signals captured by their neighbors.
The quantum fluctuations or “charge noise” on a controlled phase gate may
perturb the charge stability in a substantial way[13, 9, 14]. Understanding the
symmetry breaking issues has a crucial applicability in quantum engineering
since it instructs on the way quantum states of QDs[15] coupling is utilized.
Moreover, such understanding lays the ground for advanced manufacturing
of next generation device fabrication and quantum devices.

We have recently proposed an approach to studying electron tunneling in
a DQD based on modeling the spatial distribution of a single electron in the
DQD for the energy levels of the entire spectrum. The theoretical description
for electron states in InAs/GaAs heterostructures is based on the effective
potential model proposed in Ref.[16]. Main aspects of symmetry violation
and how each affects the entanglement were studied reported in Refs.[17, 18,
19, 20]. In line with this study, we here-in evaluate how small variations of the
system geometrical parameters (QD size and shape, and the DQD topology)
and the applied fields will affect the stability of localized/delocalized states
in DQD. Also, we delineate the limits at which charge tunneling in ideal
DQD becomes unstable with due to small fluctuations affecting across the
whole spectrum of the electron confinement spectrum. We argue that the
QD coupling in an ideal DQD (initially defined as a system with infinite
coherence) can become unstable for any small fluctuations, ∆, in the energy
of electron levels. This feature turns the DQD into an extremely sensitive
sensor; as suggested in our article[17].

In the present paper, we focus on two types of charge qubit effectors:
i) the medium , which distorts the wave function of an electron in coupled
DQD, and ii) the quantum state fluctuations (like an electrical pulse vari-
ations) induce an asymmetry. Fluctuation risers (for instance, a molecule
that is being detected, or pressure that strains the device, or a tiny displace-
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ment in the range of atomic bond length) change the coupling parameter
W and asymmetry ∆ of bi-confinement in DQD. Our numerical modeling
aims at analyzing the dynamics of localized/delocalized states in electron
spectrum under DQD geometry variations. We demonstrate that the ratio
W/∆ determines the electron localization within the DQD. The modeling of
the variations of the geometry allows us to simulate the effects of environ-
mental influence and asymmetry fluctuations on the coherence in the DQD
based charge qubit. We show that the numerical uncertainty like 0/0 takes
place due to the ratio W/∆ and defines the spectral distribution of local-
ized/delocalized states in ideal DQD(∆ =0).Such an ideal system is suitable
as a model for a theoretical description of quantum systems for only the lim-
iting case where the mathematical limit ∆ → 0 is possible. In this paper,
we consider realistic binary quantum systems, which are usually asymmetric
(∆ >0).

Our theoretical model of InAs/GaAs heterostructures for quantum dots is
presented in Sec. 2 of this paper. In Section 3, theoretical discussion of two-
level systems, anti-crossing levels, and electron coupling in double quantum
dots are given. The notations for describing the electron localization in DQD
is presented in Section 4. To illustrate the theory assumptions, the results of
our calculations for the electron tunneling in symmetrical and asymmetrical
DQWs are presented in Section 5. Here, we discuss numerical examples of
distributions of localized and delocalized states in the spectrum of a single
electron. The numerical impacts and the influence of geometry factors on the
tunneling for two cases, the ideal and ”non-ideal” symmetric double quantum
well are shown. Interpretation of the results is presented in Section 6. We
describe the spectral instability of charge carrier tunneling in DQD in relation
to the effects of environmental influence (e.g., fluctuations of electrical pulse)
on the coherence of DQD based charge qubit. A number of lasting statements
on these quantum effects are provided.

2. Effective Model for InAs/GaAs Quantum Dots

The electron state in InAs/GaAs QDs is modeled [16] based on the kp-
perturbation in the framework of the single sub-band effective mass approx-
imation. In this case, the eigenvalue problem is formulated by the Schr
odinger equation: (

Ĥkp + Vc(r) + Vsr)
)

Ψ(r) = EΨ(r), (1)
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where E is the electron binding energy, Ĥkp is the single band kp-Hamiltonian

operator Ĥkp = −∇ ~2
2m*∇, m* is the electron effective mass, which depends

on the electron coordinates written as m*(r), and Vc(r) is the band gap
potential. The Ben-Daniel-Duke boundary conditions [21] are used at the
QW- substrate interface. Here, we describe the confinement model proposed
in Ref. [16] for the conduction band. Both potentials Vc(r) and Vs(r) act
within the QWs extent. While the potential Vc is attractive, the poten-
tial Vs is repulsive. The Vs potential reduces the strength of the electron
confinement; it is added to simulate the strain effect in the InAs/GaAs het-
erostructure. Schematics one dimension (1D) representation for this band
gap model is given in Fig. 1. The boundary of a 2D InAs QW embedded
into the GaAs substrate is shown, which embodies the spatial extents of the
band gap model.

Figure 1: The ellipsoidal
shaped QW: the band gap
model for InAs/GaAs het-
erostaction and geometry QW.

The energy barrier is suchthat inside the QD
the bulk conduction band offset is null, i.e., Vc =
0, while it is equal to Vc ¿0 outside the QD. The
band gap potential for the conduction band is
fixed to Vc(r) = 0.594 eV. The bulk effective
masses of InAs and GaAs are m∗1 = 0.024 m0

and m∗2 = 0.067 m0, respectively, where m0 is
the free electron mass.

The magnitude of the effective potential
(Vs(r) that simulates the strain effect is ad-
justed so to reproduce experimental data for
InAs/GaAs quantum dots. The adjustment in-
volves the materials composing the heterojunc-
tion, and to a lesser extent, the QD topology.
For example, the obtained magnitude of 0.21 eV
of Vs for the conduction band was discussed in

Ref. [16]. This value was reconfinned by similar results obtained from eighth
band kp-calculations for InAs/GaAs QDs [22]. Another value of 0.31 eV for
Vs was obtained [23] from experimental data reported by Lorke et al. [24].
The main advantage of using the effective potential is the theoretical simplic-
ity, as well as the practical calculations, even in the case of complex geometry
of nano-sized systems. The effective potential model is compatible[25] with
existing experimental data for InAs/GaAs heterostructures.
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3. DQD as a two-level system

Let two coupled InAs/GaAs quantum dots be an example of a two-level
system. The confinement of an electron is modeled by the one-dimensional
formalism, which can be found in Ref. [27]. The electron wave function in
such quantum system is represented as a superposition of two functions. The
first one |0〉 is associate to an electron state of the left QD, considered as
isolated. The second one |1〉 describes an electron state in right QD, con-
sidered as isolated. The superposition is represented as linear combination:
a |0〉+ b |1〉, where |a|2 + |b|2 = 1. The electron is delocalized over the DQD
in this state. We describe a localized state by the condition that a (or b) is
close to zero and b (or a) is close to one.

In the ( |0〉 , |1〉) basis, the Hamiltonian (1) takes the matrix form:

H =

(
E+ W01

W10 E−

)
. (2)

Where W01 and W10 are the coupling matrix elements, and E+ and E− are
energies of the electron in the coupled DQD. Note that this matrix form
corresponds to the simple case of almost identical confinements in the DQD:
V0 ≈ V1, where V0 (and V1) is the confinement potential in the left (right)
QD The coupling parameter W is defined as follows

W ≈ W01 = 〈0|V0|1〉 ≈ W10 = 〈1|V1|0〉, (3)

where V0 and V1 are the confinement potentials in the QWs. Thus, the
coupling W express to overlapping wave functions of the undisturbed state
of two separated QDs. In the absence of the tunnel coupling, that is when
W = 0, the electron can be located in one or another dot with the energies
E1 and E2 corresponding to the undisturbed states. The Hamiltonian takes
the form

H =

(
E0 0
0 E1

)
.

The corresponding Schrödinger equations reads

(H0 + V1)|0〉 = E0|0〉, (H0 + V1)|1〉 = E1|1〉.

Where, H0 is the operator kinetic energy of free electron: −∇(~2/2m∗)∇ and
m∗ is electron effective mass.
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Diagonalizing the matrix (2), the electron single-particle energies are cal-
culated [27] as

E+, E− =
(E0 + E1)±

√
(E0 − E1)2 + 4W 2

2
. (4)

When the energy difference ∆ = |E0−E1| is large and ∆ >> W , no tunneling
occurs. The minimal value for energy splitting ε between coupled states
having energies E+ and E− occurs for the value ∆ = 0 when ε = E+−E− =
2|W |. At the same time, this value of ∆ corresponds to maximal energy
difference between E+ and E0 (E− and E1).

The case ∆ = 0 could correspond to identical QDs within the DQD. In
Fig. 2, the diagram plotted in (E,∆) coordinates helps to understand this
setting. This diagram presents the coupling between of two energy levels as

Figure 2: The anti-crossing in a two-level system as dependence of the energy of levels,
E+, E−, (solid curves) on the deference ∆ of energies E1 and E0, of the corresponding
levels for uncoupled system (red dashed lines).

an anticrossing of levels. When the coupling is absent, the levels are crossed
as is showed by dashed lines in Fig. 2. One can see that, for large ∆, the
energies E+ and E− become equal to E0 and E1. Analysis of Eq. (4) gives
the same result.

4. Electron localization in double quantum wells

In this section we present the formalism that allowed us to analyze the
electron localization and spectral distributions of localized/delocalized states
in double quantum wells (DQW) and dots. Note that an experimental de-
tection of the excited states in DQD has been proposed in Ref. [28], the
authors used capacitive charge sensing to single out such states. It was

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4358648

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



shown in Ref. [17], that the spectral distributions of localized/delocalized
states are extremely sensitive to the breaking of the DQD shape symmetry.
To explain this statement, we consider electron levels in 1D bi-confinement
potential with the energies E(n), n = 1, 2, 3 . . . listed in increased order of
energy values. The model utilizes the coupling parameter, Θ, which defines
the delocalized (Θ ≈ π

2
) and localized (Θ ≈0) states of a single electron.

This parameter depends on ∆(n), the difference between energy levels of the
left and right DQWs, the considered spectra are those of separated QWs.
In this study, the difference is caused by a shape symmetry breaking. For
one-dimensional two-level system, the dependence of the localization of a sin-
gle electron in DQW may be expressed [27] by the ratio W (n)/∆(n), where
W n is defined by the wave functions overlaps for separated QWs and ∆(n) is
the energy difference between n-th electron levels in the spectra of separated
QWs:

Θ(n) = arctan(2W (n)/∆(n)), n = 1, 2, 3, . . . . (5)

The dependence of Θ on the ratio 2W/∆ is shown in Fig. 3. Here, the
delocalized state corresponds to a coupling in the QWs. The wave functions
of each levels (the spectral quasi-doublet, defined in Eq. (4)) can be expressed
as follows:

|+〉 = |0〉+ tan (Θ/2)|1〉, |−〉 = − tan (Θ/2)|0〉+ |1〉, (6)

were the normalizing constant is arbitrary. The wave functions of the unper-
turbed states are noted for ψ1 and ψ2 and indexed by 1 or 2 for separated
left and right quantum wells, respectively. For identical WQs in DQW, each
unperturbed energy level spits to two according to Eq. 4, where E0 = E1.
To analyze the electron localization, we calculate the single electron average
coordinate 〈x〉, calculated as matrix elements:

〈x〉i = 〈i| x |i〉, 〈x〉ij = 〈i| x |j〉, i, j = 0, 1,

which are associated, respectively, with the electron wave functions |i〉 in
QW1 and QW2, considered separate. The x-coordinate origin is chosen to be
the mid-point of the two QWs. The average coordinate 〈x〉+ and 〈x〉− can
be written as:

〈x〉+ = 〈x〉0 + tan2 (Θ/2)〈x〉1 + 2 tan (Θ/2)〈x〉01 (7)

and
〈x〉− = tan2(Θ/2) 〈x〉0 + 〈x〉1 − 2 tan (Θ/2)〈x〉10 (8)
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for the corresponding quasi-doublets within the electron spectrum. Single
electron can be localized in one or another QW and 〈x〉+ ≈ 〈x〉0 and 〈x〉− ≈
〈x〉1.

Figure 3: The localization of single
electron in DQW: the relation be-
tween the coupling parameter Θ and
the ratio 2W/∆ for a confinement
level in DQW is given. We show the
ranges for localized and delocalized
states of the electron by blue and
green highlighting.

The sensitivity of the coupling param-
eter Θ to small variations of ∆ and W is
estimated [17] as:

δ(Θ) ∼ − W

∆2 + 4W 2
δ(∆)+

2∆

∆2 + 4W 2
δ(W ),

(9)
where W and ∆ are selected from Wn and
∆n, they depend on the quantum numbers
n.

5. 2D DQD: electron localization and
DQD geometry

The numerical analysis discussed in this
section concerns electron tunneling in a typ-
ical InAs/GaAs double quantum well. Such
a DQW is modeled using the material and
geometric parameters considered above and

taking into account either identical QWs (ideal DQWs) or nearly ideal DQWs
(formed by knowingly non-identical QWs). These two types of DQW ge-
ometries differ significantly[17]; small variations of the ideal DQW geometry
that break the symmetry drastically distort the spectral distribution of tun-
nel states. Our choice of DQD geometry is motivated by the experimental
results of fabricated DQDs described in Ref.[29], where QD pairs are made
mostly ellipsoidal.

In the ideal DQW, the probability for an electron to be in the left QW
or in the right one is, according to Eq. (6), equal to 1/2 for all confinement
states of the DQW. This tunneled state corresponds to the limits ∆ → 0,
finite W value, and the relation W > ∆. This occurs when Θ ∼ π/2 and
tan(Θ/2) ∼ 1. The relation (6) takes the following form of symmetric and
anti-symmetric configurations:

|+〉 = |0〉+ |1〉, |−〉 = −|0〉+ |1〉.

Normalization leads to writing the electron probability as:

〈±|±〉 = 〈0|0〉/2 + 〈1|1〉/2

8
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due to orthogonality of the elements of the basis 〈0|1〉 = 〈1|0〉 = 0.
The condition ∆ → 0 relates to the degree of QW similarity within the

DQD system. Realizing this limit, the condition W > ∆ holds for any small
value W . It mathematically means that there is not a limit for inter-dot
distance for which the coherence is lost. Ideally, the wave function of the
separated QW is spread everywhere and one can always find non-zero W
values. Thus, the ratio 2W/∆ always goes to infinity when ∆ → 0. The
latter means that the delocalized (coherent) state does not depend on inter-
dot distance in an ideal DQD (see Fig. 3). Obviously, a realistic consideration
does not agree with such ideal model.

The limit ∆ → 0 is a mathematical idealization, for which the spectral
distribution of delocalized states corresponds to maximal coherence in the
ideal DQW. However, the ideal system is unstable relatively to small fluctu-
ations. This conclusion flows down from the results of our calculations, where
the numerical approximation errors simulate small variations of the param-
eter ∆ of the almost ideal DQD. The calculated values include the electron
confinement energy and wave function which are obtained by solving numer-
ically the Schr odinger equation (1). We use the averaged x-coordinate of
electron to definite localization in the DQW according to Eqs. (7) and (8).
The spectral distribution of localized and delocalized states for symmetric
DQW is shown Fig. 4a). For these calculations, we used the DQW geom-
etry shown in Fig. 1, where both QW1 and QW2 are perfect ellipses with
semiaxes Rx=55 nm and Ry=35 nm and with interdot distance a=5 nm. In
Fig. 4a), the localized/delocalized states are shown for three different meshes
chosen for the finite element analysis (FEA). The mesh sizes were chosen to
be fine and up to the full extent of the available computer memory (32GB)
and to the limit of software capabilities in terms of handing meshing nodes.
Practically, the meshes lead inevitably to different geometries for the DQW
as well as for each QWs due to finite element approximation for the geometry
being studied. The calculations for the largest mesh (Mesh 1) demonstrate
domination of the localized states in the spectrum (black dots). The finest
mesh (Mesh 2) appeared to provide larger delocalizing (red open circles). The
energy spectrum of single electron can be sorted according to electron local-
ization probability. As a result, a set of localized states (in the left QW or
right QW) appear either at around max〈x〉 and min〈x〉, or around 〈x〉 ∼75
and -45 nm, where states have different probabilities of being in the left and
right QWs. The results obtained using Mesh3 (purple dots) are essentially
clustered around 〈x〉=15 nm indicating that delocalized states become dom-
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inating. The finalized result can be obtained by the smallest possible mesh
cell size, such decrease is numerically limited inherent to the finite elements
methods and computing capability.

To interpret this numerical result, one must examine the coupling W
with more details. In Fig. 5, the graphical representation for Eq. (3) shows
the regions of the integration for the electron wave functions of the ground
state. The result of the integration depends on the overlapping of the wave
functions of separated QWs. The parameters that define this overlapping
are the distance between QWs and the single wave function spillover outside
the QW spatial extent, The spillover is energy level dependent. The wave
function spread is due to the asymptotic behavior of the confined states; such
asymptotic behavior is written as:

Ψ(x) ∼ Aexp(−b
√
Ec − E x), (10)

where x is the distance from a QW boundary, A and b are constants: these
would depend at most on quantum numbers (e.g., orbital numbers). Here, the

Figure 4: a) The ideal DQW: the tunneling in symmetric ellipsoidal DQW: the sizes of the
QW1 and QW2 are equal. The results of calculation for different three meshes are shown
by dots (Fine mesh), open circles (Finer mesh), and open rectangles (Finest mesh). b)
Schematic deposition of the QWs in the DQW with relation to the averaged coordinate
〈x〉 of the localized states (dashed lines). The inter-dot distances a is shown.
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Ec definite the bottom of the quantum well. The effective orbital quantum
number defines the symmetry of wave functions of the electron levels. The
integration of the functions having similar symmetries leads to a similar
result. It is visible in Fig. 6 for the spectral distribution of the averaged
coordinate where the tracks correspond to similar symmetry of the wave
functions. The coupling parameter W may depend on the configuration of
the geometry in the QW. For example, an ellipsoidal QWs produce smaller
W value than the circular QWs as a result of the smaller integration area.

Figure 5: The schematic representation of
the QWs (QW1 and QW2, in light blue ar-
eas) that are separated (without a coupling).
The extent of the electron wavefunction for
ground states are shown by blue and red cir-
cles. The integration in Eq. (3) for W is per-
formed over these circles. The areas of over-
lapping (blue and red colors) formed by the
confinement potentials (V0 and V1) and the
functions |0〉 and |1〉 give an essential contri-
bution to the integrals (3).

From the numerical experiment
shown in Fig. 4, one can conclude
that the DQW geometry asymmetry
leads to weak coupling in the sys-
tems. Numerical calculations were
unstable within the finite element
approximation. The simple analy-
sis of the interplay between the cou-
pling parameter W and the spectra
energy shift ∆ given above is ap-
propriate for this situation when the
coupling in QDW is weak and W is
small. Eq. (9) helps us to under-
stand the instability of such tunnel-
ing. The simple analysis taking into
account that W ≤ ∆ and ∆ ≈ 0

leads to the following relation

δ(Θ) ∼ W

∆2
δ(∆), (11)

which means that small variations of ∆ can produce large variations of the pa-
rameter Θ that determine the electron localization as well as δ(Θ) ∼ 1

∆
δ(∆).

To demonstrate the effect of the symmetry breaking for the electron con-
finement in DQW, we change the ellipsoidal geometry of the DQW, presented
above to the one when the size of QW1 with the semi-axes ratio (Rx/Ry =
55/35) ) is larger than the size of QW2 with the ratio (Rx/Ry = 55/34.75).
The QW horizontal axes are shifted by s=1 nm. The results of the calcula-
tions for asymmetric DQW are shown in Fig. 6 where the Mesh2 and Mesh3
from previous calculations for ideal DQW have been used. Comparing this
result and results for the ideal case, we can conclude that the asymmetric
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case is numerically more stable, and converges more rapidly. TThe effect of
the mesh variations is not clearly discernable. However, in this case, the lo-
calized states dominate the spectrum. Thus, an asymmetry within the DQW
plays a significant role as it hinders and even blocks the electron tunneling.
For non-identical QDs in DQD, when ∆(n) > 0 and W (n) is small, the ratio
(5) strongly depends on the strength the coupling W (n) that determines the
spectral distribution of the tunneling. Generally, due to W (n) being small,
the localized states dominate according to the relation W (n)/∆(n) ∼ 0. From
fig. 6 we can conclude that the spectral distribution for localization of the
electron corresponds to the dependence of W (n) on the quantum number n
numbering the spectral levels. One can separate sets of energy levels with
similar tunneling strengths. These sets are formed by similar spatial dis-
tribution of the wave function, which depends on quantum numbers (e. g.,
radial and orbital quantum numbers). Variations in the electron localization
depending on the change in the parameter W are also shown in Fig. 4. Note,
here that the inter-dot distance could be the input parameter, which affects
the coupling strength W more significantly. The integrals in Eq. (3) depend
on the wave function overlap of separated QWs as shown in Fig. 5. The
parameters that define this overlap are the distance between QWs and the
spillover of the single wave function outside of the QW shape region, which
depends on the energy of the considered level and the symmetry of the wave

Figure 6: The tunneling in almost ideal DQW: asymmetric ellipsoidal dots (size of
QW1(Rx/Ry = 55/35) ) is larger than the size of QW2(Rx/Ry = 55/34.75). The QW
horizontal axes are shifted by s=1 nm. Open and close circles show the results related to
the variations of the solver mesh.
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function. The wave function spread is due to the asymptotic behavior of the
confined states given by Eq. (10). The asymptotic dependence on a quantum
number (e.g., orbital numbers) results in regular located traces in Figs. 4
and 6. It can be shown that the value of the logarithm of the tunneling
rate ln(ε) depends on the energy as a linear function of

√
E. The tunneling

rate ε is correlated to the coupling coefficient Wn. We can conclude that the
contrast between ideally symmetric DQW and asymmetric one is the strong
dependence of the tunneling on inter-dot (well) distance. In an ideal case,
the inter-dot distance is irrelevant as it does not affect the tunneling.

Further analysis of the ellipsoidal QW considers variations of the ∆. To
that end two sets of geometry parameters are used. For the set, the semi-axis
ratio Rx/Ry is considered t be 55/35 for QW1 and 55/34.90 for QW2; the
relative shift s along the horizontal axis is 1 nm. The second set has the
same semi-axis ratio parameters for QW1 (i.e. 33/35), but for QW2, it is
chosen to be 55/34.75, while s is considered -2 nm. The first set is closest to
symmetric DQW. The results of calculations are given in Fig. 7, wherein a)

Figure 7: a) The tunneling in ellipsoidal DQW with increasing asymmetry. Two set
geometry parameters of the DQW were chosen. The solid circles are related to the first
DQW (the set where Rx/Ry = 55/34.75 and s=1 nm for QW2). The open circles are for
the second DQW (the set where Rx/Ry=55/34.90 and s=-2 nm for QW2). b) The energy
shift ∆ of separated QW spectra for these two sets of QDW geometry.

the first DQW (the closest to the ideal case) corresponds to a larger degree of
delocalization in the spectrum than the second DQW with a larger geometry
difference.

The energy difference ∆ of the spectra of the separated QWs for these
two variants of QDW geometry is presented in Fig. 7b). The tunneling is
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a concurrent effect of the interplay between W and ∆, both conveying the
asymmetry of the two QDs. However, in this numerical experiment, the small
variations ∆ can affect the tunneling more significantly. The tracks which
are visible in Fig. 7a) separate the values 2W (n) according to the spatial
symmetries of corresponding wave functions. These tracks for both cases
are similar. However, the values ∆(n) are larger for more dissymmetrical
DQW. According to Eq. (5) and Fig. 3, it means that the corresponding
delocalization is weaker and states are closer to delocalization ones. One
can see it in Fig. 7a) for the low-lying energy levels, where this is clearly
demonstrated. For the higher levels, this difference is mainly saved, however,
increasing the values of ∆(n) may be compensated by W (n) increasing that
corresponds to a more spatially distributed wave function.

In our next numerical experiment, we decreased the semi-axes of the
ellipsoidal QWs to the values Rx/Ry = 15/15 for the left QW and Rx/Ry =
15/14 for the right QW. The change leads to increasing the coupling W . We
calculate the electron localization in the lowest quasi-doublet of the spectrum
for different values of the inter-dot distance a. The localization was evaluated
by the averaged electron x-coordinate. The results of the calculations are
shown in Fig. 8. In Fig. 8a), the geometry asymmetry of the DQW is induced
by numerical FEM approximation on the finite mesh so that ∆ < 10−10 eV.
We define this DQW as an almost ideal one. The ground state is a delocalized
state up to a <20 nm, which disagrees with previous our calculations for
larger size ellipsoidal QWs with strong semi-axes deferences. In Fig. 8b),
the asymmetry of the DQW is determinate by the ratio Rx/Ry = 15/14.5 for
semi-axes of right QW. The value for ∆ can be graphically evaluated by the
corresponding values E1 and E2 in the figure. The case of separated QWs
corresponds asymptotically to the case of the largest inter-dot distance of
5 nm according to Eq. (4) for W ∼ 0.

The significant inter-dot distance dependence of electron localization is
obviously related to the high sensitivity of the matrix element W on the
distance a as we have explained above. The cases of almost ideal DQW
and the case of DQW with geometry-induced asymmetry are different by the
values of the ∆. The smaller ∆ generates a bigger value of the ratio W/∆
and provides a delocalized state of an electron for larger a.
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Figure 8: The electron localization of two lowest states of the spectrum (lowest quasi-
doublet) for different values of the inter-dot distance a. The results of calculation for 〈x〉/b
are shown by different symbols. The values of a are given in the legend, b is normalizing
constant: b = a+ 2Rx. a) The almost ideal DQW: the asymmetry of the DQW is induced
by numerical FEM approximation on the finite mesh so that ∆ < 10−10 eV. The spherical-
shaped QWs have radii of 15 nm. b) The asymmetry of the DQW is defined by the ratio
Rx/Ry = 15/14.5 for semi-axes of the right QW. Here, the value E0 and E1 are pointed
out to show ∆.

6. 2D DQD: modeling a charge qubit

Based on our approaches, we can propose an interpretation for the DQD-
based charge qubit [7, 30, 31, 32, 33, 34, 35]. We have shown in previous
sections that the tunneling in a two-level system, exactly like in the DQD, is
sensitive to fluctuations according to Eq. (5) and resulted by a concurrent
effect of ∆ and W . Thus, the tunneling in a DQD based qubit would be
affected by any fluctuations of ∆ and W , both can lead to loss of coherency
of the qubit. The ideal coherence is defined in a DQD where the probability
for an electron to be in the left QD or in the right is about 1/2 for all possible
states of the DQD. This qubit state corresponds to the limits ∆ → 0 and
W > ∆; these occur in a range of Θ ∼ 0, where the relation tan(Θ/2) ∼ 1
and the probability is close to 1/2. The limit ∆ → 0 is a mathematical
idealization, for which the spectral distribution of tunneling states in such
ideal DQD corresponds to maximal coherence. However, the charge qubit
initial state has to be weakly coupled and localized to realize binary logic.
In this state, almost deal system is unstable relatively to small fluctuations.
This conclusion flows down from the results of our calculations, where the
numerical errors simulate the small variations of input parameters of the
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almost ideal DQD.
More realistic consideration is related to finite values of ∆. A simple case

to mention is when ∆ 6= 0 may be induced by a geometrical asymmetry in
DQD. The large ∆ is appropriate to produce the initial state of a qubit as
a localized state. To provide a large value for the ratio W/∆ and stable
coherence, the value W has to be large so that W > ∆ is always verified.
Thus, there is apposite situation for the initial state (localized) and working
state which must be delocalized.

Figure 9: The confinement states (E1 and E2) of a single electron in separated QDs (QD1

and QD2): a) without and b) with an electrical pulse. The energy shift is ∆ = E2 − E1.
Here, we assume that ∆′ < ∆ is due to the bias of the confinement potential in the
electrical field. The fine dashed contour demonstrates non-similarity of the QDs.

The DQD-based charge qubit is stimulated by an electrical pulse [7] which
leads to tunneling (coherence) in DQD. For fabricated DQD, the energy dif-
ference ∆ of the initial state is unrecoverable and this state can be a localized
state, which might be caused by, for example, a relatively large inter-dot dis-
tance (small W ) and large value of the ∆. This realistic situation is schemat-
ically illustrated in Fig. 9; wherein a) there is no tunneling and the separated
QDs energy levels are shown. During the electrical pulse, the bias of the con-
finement potentials takes a place, as shown in Fig. 9b) schematically. That
makes a possibility for electron tunneling due to decreasing of the ∆ and an
increase of W due to the reduction of the depth of the quantum wells. In the
last case, the corresponding energy levels become closer to the upper edge of
the wells and the wave functions take more space around the centers of the
QWs. We consider that the ∆′ gets smaller than ∆. Thus, the large value
for the ratio W/∆ is provided which means domination of the delocalized
states and coherence in DQD. The coherence will be kept during the pulse.
The form of the electric pulse can be found in Ref. [7]. In this model, it is
assumed that the fast pulse acts on the QDs in a non-adiabatic way.

We have seen, that small ∆′ increases the coherence in DQD. However,
electrical field fluctuations during the pulse can give different causal values
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Figure 10: (Upper panel) The dependence of the energy of the lowest quasi-doublet on
the energy correction Ve for the effective potential Vs in the right QW: V ′s = Vs − Ve.
The considered DQW asymmetry defined by the semi-axes ratio Rx/Ry of right QW is
15/14. The inter-dot distance a was chosen to be 4 nm. The circular (square) dots show
the results of calculation for lower member of the quasi-doublet (upper member). (Lower
panel) The normalized cross-section of electron wave functions at the ground state in DQW
for different Ve. The labels A, B and C correspond to the Ve value in the upper panel.

for ∆′. When ∆′ ≈ 0, the effect of the fluctuation on the coherence may be
large if the value of the W is enough small which means the coupling is weak.
In another word, unstable tunneling in DQD corresponds to the case when
W << ∆′ according to Eq. (11). The tunneling will be stable when the W
is relatively large W >> ∆′ which corresponds to strong coupling in DQD.
Our next numerical simulation is dedicated to the relation between W and
∆.

We consider DQW with the asymmetry defined by the ratio Rx/Ry =
15/14 for semi-axes of right ellipsoidal shaped QW. The left QW has a spher-
ical shape with a radius of 15 nm. The inter-dot distance was chosen as a=4
nm to provide an electron localized state in the initial state. To simulate
the electric pulse, we make an energy correction Ve for the effective poten-
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tial Vc in the right QW so that V ′c = Vc − Ve. Increasing the value Ve, one
can find the position of resonance tunneling when the electron state becomes
delocalized. This position corresponds to the anti-crossing of the levels of
a quasi-doublet. In Fig. 10, we present our results of the simulation. The
dependence of the energy of the lowest quasi-doublet on the correction Ve
demonstrates the anti-crossing in Fig. 10(Upper panel). In the lower panel
of the figure, we show the effect of the anti-crossing on the electron localiza-
tion. In the central point of anti-crossing, when Ve=1.45 meV, the electron
is delocalized with equal probability in both QWs. This probability becomes
to asymmetric one when the Ve is going from the central value (point B).
It looks like the electron change localization under the increasing of Ve from
left QW (point A) to right QW (point C).

Figure 11: The averaged coordinate 〈x〉/b (solid squares) and electron energy (E − Eav.)
(open squares) of lowest quasi-doublet for different values of the inter-dot distance a in an
asymmetric DQW. The asymmetry of the DQW is defined by the ratio Rx/Ry = 15/14
for semi-axes of right QW. The calculation results are shown by different symbols. The
values of a are given in the legend, b is normalizing constant: b = a + 2Rx. a) Ve=0. b)
Ve=1.45 meV.

In our model for the charge qubit, the initial localized state is reached
when the inter-dot distance a is equal to 4 nm and more. For shorter dis-
tances, the delocalization is begun. We calculate the dependence of the
electron localization on variations of a. The results are presented in Fig. 11,
where the degree of the localization is expressed by the averaged x-coordinate
and deviation of energy from averaged energy Eav = (E− + E+)/2. The
electron states of the lowest spectral quasi-doublet are considered for the
modeling. The result in Fig. 11a) is interpreted as follows: the value of W
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rapidly decreases to zero, while ∆ is large. This provides delocalized states
for large distances. The energies E− and E+ approach to E1 and E2, asymp-
totically. In Fig. 11b), we show the results of the same calculations under
the pulse simulated by Ve=1.45 meV acting in the right QW. The electron
state is delocalized one up to the value of 6 nm for the a. We can interpret
Fig. 11 using the relation between W and ∆. In Fig. 11a), at short distances
when a¡4 nm, the W is large and quickly decreased. At the same time, the
∆ is about zero. The ratio W/∆ is large and the electron is delocalized. For
larger distances when a > 6 nm, the competition between W and ∆ leads
to localized states due to small W and W << ∆, where the ∆ is small but
finite. Our modeling for the electrical pulse gives stable coherence of the
charge qubit due to increasing the ratio W/∆, where W is initially weak
coupling. This increase of tunneling is provided by decreasing ∆ to small
values of ∆′. However, as we have seen above in Eq. (11), the tunneling can
be potentially unstable when W ≤ ∆ and ∆ ≈ 0 due to the sensitivity of
tunneling on the ∆ variations is proportional to 1

∆
.

Now, we can consider an almost ideal DQW to definite one more realiza-
tion for a stable qubit. An example, we can remember the ion of H+

2 where
two identical protons are bound by an electron, interacting with the Coulomb
potential. The idealization allows us to propose a stable qubit. The results
of corresponding calculations are presented in Fig. 12. Coherence in DQWs
at large inter-dot distances is ensured by the similarity of QWs. We have
illustrated this in Fig. 8. The averaged coordinate 〈x〉/b (where b = a+2Rx)
is close to zero value and electron energies of the quasi-doublet are the same
with the accuracy of 10−10 eV. That is the result of the numerical FEM
approximation on the finite mesh. In Fig. 12a), the correction Ve for Vs
potential in the right QW (a pulse) leads to the loss of the almost ideal co-
herence. The quasi-doublet members are separated by energy and degree of
localization due to large ∆. For short inter-dot distance a, the ∆ is compa-
rable with W and we see a partial delocalization. When the a is large the
relation W << ∆ is satisfied and the electron states are localized. It can
be an initial state of the qubit. The coherence state is produced when the
correction Ve is switched off. The graphical description of the model is shown
in Fig. 12b).

For practical realization, the QW must be almost identical. This is the
hard problem of fabrication. The future modeling including different mate-
rials can allow approaching to almost ideal DQW. For example, the shallow
electron confinement leads to a large value W that forced the coupling and
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Figure 12: a) The averaged coordinate 〈x〉/b (solid squares) and electron energy (E−Eav.)
(open squares) of lowest quasi-doublet for different values of the inter-dot distance a in
almost ideal DQW. The radii of the circle-shaped QWs are 15 nm. The asymmetry of the
DQW is induced by geometry approximation inherent to FEM, since the mesh finesse is
limited (∆ < 10−10 eV). The Vs potential is corrected by Ve=1.45 meV in the right QW,
and the horizontal line corresponds to the results obtained with Ve=0. The remaining
notations are the same as those used in Fig. 11. The dashed vertical line separated two
regions where W ≈ ∆ and W << ∆. b) The schematics diagram for the qubit based on
the almost ideal DQD. The electrical pulse (pulse) changes the confinement (in red color)
in the right QD so that the energy level E2 is shifted by the value ∆′ where ∆′ >> ∆.
The small ∆ is not shown. The fine dashed contour demonstrates an arbitrary geometry
for these similar QDs.

make a weaker condition for the similarity of QWs. The same effect is ob-
tained by decreasing the size of QWs. The results of such calculations are
presented in Fig. 13. We reduced the radii of QWs to 5 nm. The inter-dot
distance was chosen to be 4 nm. The asymmetry of the DQW is simulated
by decreasing the semi-axes of right QW R′y = Ry − κ/100, where the pa-
rameter κ is increased from zero value. The initial state κ=0 is delocalized
one with the probability of 1/2 for an electron to be in the left or the right
QW. Increasing κ leads to the breaking of the ideal coherence. However, this
breaking is not significant up to κ ≈5 nm. In this region, the relation W > ∆
has to take place. A more strong violation of the geometry symmetry leads
to increasing of ∆ and decreasing W . So that the relation W < ∆ is satisfied.
The state of an electron becomes to localized one when κ >30 nm Thus, the
DQW keeps a coherence with asymmetry up to 5%. We can increase this
limit by increasing the coupling W . It can be done for example by reducing

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4358648

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



the size, topology or material composition of the QWs

Figure 13: a) The effect of geometry asymmetry in almost ideal DQW. The radii of the
circle shaped QWs are 5 nm. The asymmetry of the DQW is simulated by decreasing the
semi-axes of right QW: R′y = Ry−κ/100 where the parameter κ is varied. Other notations
are similar to the ones used in previous figure. The dashed vertical line separates the region
where W > ∆ from that where W < ∆.

The environmental induced fluctuations are mainly related to W . The
environment media interacting with the electron in DQD distorts the wave
functions and changes the matrix elements W . The complex competition of
the two factors ∆ and W reduced to the dependence of the coherence on
W . We have seen that for different symmetries of wave functions of different
spectral states produce clear picture of the W influence on the tunneling in
DQW. An essential decreasing of W leads to lost of the coherence.

The effects of the environmental fluctuations of the pulse in the charge
qubit have been formalized in Refs. [36, 37, 38], where the dephasing of
a superconductor qubit was investigated. The wave function taking into
account the dephasing can be represented by the formula: |0〉 + βeiφ(t)|1〉,
where the pre-factor of the eiϕ(t) phase term can be described by a Gaussian
distribution that expresses the fluctuations. Our analysis is in agreement
with this phenomenological formalization.
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7. Conclusions

The localization of a single electron in two-dimensional binary quan-
tum systems was numerically studied using the effective potential model for
InAs/GaAs nano-sized heterostructure. The emphasis was on the differences
between the system elements (subsystems). The effect related to the break-
ing of similarity of the subsystems has been discussed. Prior considerations
of such systems were limited to symmetrical shapes of identical QDs.

The variation of similarities were controlled and symmetrical versus asym-
metrical shapes of QWs within DQW were studied. To that end the energy of
confinement states E(n), n = 0, 1 . . . , and the spatial localization of a single
electron, detected by averaged coordinate x of the electron the DQW, were
calculated. The effect of symmetry breaking on localization is explained in
terms of the theory of two-level systems. To explain our results, an elemen-
tary introduction to the theory was provided. Two key parameters that affect
the electron localization were identified; the first one, Wn, is the overlap of
the wavefunctions of separated QWs, and the second one, ∆n, is the energy
difference for n-th electron levels in the spectra of the separated QDs.

We showed that the ratio Wn/∆n determines the spectral distribution
of the localized/delocalized states in DQW. The concurrent effects of W(n)

and ∆(n) on the electron localization is shown by variations of the DQD
geometry. We can conclude, that the spectral distribution of the electron
tunneling demonstrates high sensitivity to the DQW geometry variations.

We considered the strong and weak coupling of QWs. These are delin-
eated through relation between W and ∆: W > ∆ for the strong coupling,
and ∆ ≈ 0, W < ∆ for the weak coupling. In particular, we showed for an
ideal DQW that the electron coupling of QWs can be unstable for any small
violation of the symmetry, even when ∆ → 0, As example of weak coupling
in the ideal DQW, we have presented numerical calculations with variable
finite element meshes. The set of meshes generates variations of the ∆.
The corresponding distributions of localized/delocalized states demonstrate
unstable tunneling for relatively small variations of ∆. At the same time,
the coherence in ideal DQW was found to be independent of the inter-dot
distance.

Our approach based on a study of localized/delocalized states in DQW
can be used for study of limitations for the stability of charge qubits. We
simulated a charge qubit in which the effect of the electrical field is used
to ensure the coherence of the qubit. The relation between W and ∆ in
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establishing the qubit coherence was shown. The decreasing of the value
of ∆ under the pulse gives stable coherence. Based on our modeling, the
fluctuations of electric pulse can result in variations of the energy shift ∆.
It must be noted also that establishing strong coupling is important due to
the environmental fluctuations impact the symmetry of bi-confinement in the
DQW and can result in fluctuations of overlapping integral W that led to
loss of coherence.

Ultimately one should consider a qubit, based on almost ideal DQW. As
a means for controlling the qubit, and its coherence, one can use pulses of
other nature than electric pulses. The pulse can generate binary logic. The
coherence is established due to the almost ideal property of this DQW and a
pulse will not be needed. However, the problem of environmental influence
remains has to be addressed in a different way.
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