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The superconductivity Hamiltonian model with attraction is investigated. An asymptotic
relation for average calculation is constructed in the model and the approximating Hamil-
tonians are presented.

In our previous articles an approximation procedure based on the so-called
“approximating Hamiltonian” has been developed together with the conditions
where the obtained solution becomes asymptotically exact in the limiting process
of statistical mechanics.

The aim of the present article is to study the problem of the asymptotically
exact definition of many time correlation functions of any order as well as correlation
functions corresponding to the Green functions for systems with attraction. We have
formulated a method with more a profound analysis between correlation functions,
free energies and Hamiltonian approximation. We notice that our methods! for a
Hamiltonian model with negative four-fermion interaction have been constructed
in general form for free energies.?

Here, we use our previous results concerning the estimation of free energies for
model and approximation systems; and further with respect to the results in Refs. 1
3 and 4 we establish their connection with correlation functions. The estimation
which we get will be an estimation for quasi-averages (with the usual two limit
techniques, the first V' — oo, and then r > 0, r — 0o0). We notice that the approach
being applied for the case of the positive four-fermion interaction ® in the case of
the model system with negative interaction is not valid because the first case is,
in principle, distinguished from the second one. In the first case of the positiveness
four-fermion interaction, the proof technique is essentially based on the fact that
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the maximum of the free energy is constructed by means of the approximating
Hamiltonian.

In the second case, the negative four-fermion interaction, the free-energy, calcu-
lated for the approximating Hamiltonian Hy(C'), will provide a minimum relative
to parameter C, essentially when using the U — V' Bogolubov transformation. The
considered model problem is characterized by a Hamiltonian with a negative pair
four-fermion interaction (so-called BCS Hamiltonian®):

I=T-2Vpplg—r(p+eH)V, (1)

where

p2

T =Y Tiahay, Ty= oo 9>0,
0

1 4 1
=15y Z)\fa}a}7 ' = T4 Z)\Jcafaf7
() ()

and V is the volume of the system, f = (p,o) is a set impulse p, and o is the spin
index possesing two values %, —%; p is an ordinary quasi-discrete momentum spec-
trum going into a continuous positive parameter which characterizes the intensity
of interaction at V — ooc.

Then we introduce terms (¢ + 1)V and r > 0 in the Hamiltonian source.

The functions Ay and T satisfy the following additional conditions:

Tp=Tp  Ar=—As, 3)
1 1 1
— Y MI<k, =) [Tir|<ke, = )2 >k 4
2VZ|f|f 1, 2VZ|ff|f 2, VZ(]‘) > ks, (4)
) (£ (£
where k1, ko, k3 are constants at V' — oco. The free-energy per unit volume corre-

(2)

sponding to the system of non-interacting particles is finite.

We shall show that the correlation functions composed from the product of
Fermi operators of any order for the model (1) can be calculated with asymptotic
accuracy on the approximating Hamiltonian (8):

[0 =T —2VCq(e" + ) +2VC3g —r(p+ oV, (5)

which represents a quadratic form of Fermi operators, and can be reduced to a diag-
onal form. The complex constants C' in Eq. (5) must be found according to Refs. 7—
11 from the minimum condition for free energy constructed from the Hamiltonian
approximation (5):

0 fro
oC
To prove this difference we apply the method obtained in our previous works, and

fro(C), Jro(C) = min. and hence =0.

in so doing we obtain the inequality:

L
C’Sfpo—fpgT, L = const.
V75
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This result has been used in numerous applications. For example, using this result,
Hertel and Thirring calculated the free energy in the thermodynamic limit for a
model describing a system of mutually attracting fermions.'? A similar exactly
solvable model of a crystal,

v 1
H =3 T(@ajag+ 5 Y Ma)pap-a:  Pa=7; D0k qan
(q9) )] (k)

was considered by Bazarov.'® The idea of the approximating Hamiltonian was de-
veloped in Refs. 20-23. Let us consider the correlation function averages composed
from the product of an arbitrary number of Fermi operators based on the Hamil-
tonian model (1) and the corresponding approximation (5):

Spe’%H

<H>F: T (6)
Spe e
Sp e~ FH
pe @

(Hpy = ——w (7)
Spe~ e

where H represents some product from Fermi operators with arbitrary number as
follows

H=-an(fi)-ap(fs)--

These selection rules will be used to know in advance what averages (H)p, (H)p,
with an arbitrary set of Fermi operators are equal to zero and so eliminate them
from consideration. We notice that our model (1) and approximation system (5)
are invariant with respect to the following special gradient transformation:

Upo — eiq)apa' ,
for  p = po,—po,
and  ape — Apo ,
p# Do
For the sake of convenience we can write it in the form:

i® f —i®d _t
fy, — € afy, ag, —€ ag,

a—gy—ePag, alp —e®al (8)

(ay and a} are not valid if f # fo, —fo) keeping in mind that such a transformation
is with impulse variable p. To obtain such a transformation (8) we introduce the
unitary operator:

7 = ei@(nm 7"*?0)’ Z]L — eii(b(n”O 7n7”0) s

zzt =1,
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where n,, — n_,, is an operator of difference number particles with momentum p
and —pg being the integral of motion for system (1). Using such an operator from
the left and putting a_y¢, ay, a}, al § we have the gradient transformations:
af, —>ZTafOZ:6i(I’af07 a—j, ﬁZTa,fOZ:e*i‘ba,fO.
Returning back to the averages (6) and (7). Suppose that in such a product of
Fermi operators, one can mark out the pair combinations in the form:
AfyC—fos- -, agoazgo, Y VS S alOaSO . 9)

Then, taking into account the gradient transformation (8) we see that the “phase”
in such combinations becomes equal and therefore averages, (6) and (7) which
contain such pair combinations of operators, in general, may not be equal to zero.
In contrast, if there is at least one unpaired operator in the considered product of
Fermi operators, then it is easy to see that such averages will be equal to zero. In
particular, averages composed of an odd number of Fermi operators are equal to
Zero.
Now let us find an estimation of the difference

(H)r = H)r, - (10)

To construct the corresponding estimates, it is convenient to transform inequalities
from the old Fermi operators ay, a} to the new ones ay, a, using the Bogoliubov
transformation U — V 19:

af =UuUfayf — UfOéJLf 5
a}:ufa}—vfoz_f, (11)
where functions uy and vy satisfy the condition of symmetry:
U_f =urf, v_f = —vy, ufc—&—vfc:l.
We put for uy and vy:

1 Ty E(f) Ty
== 1+ =2 L
U—f \/§ +Ef7 V—f \/§ Ef’

E; = \/T]% + A3 (2Cg +1)2.

where

Approximating Hamiltonians under the transformation may be reduced to the
diagonal form in the new Fermi operators:

1

— T 2

To=)_ Erojay +V{20%— 2> (By—Ty) ¢ - (12)
€)) )

It is easy to notice that the averages <H>FO7 constructed on the basis of such a

model of the Hamiltonian, can be calculated using the Wick and Bloch methods.
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Let us write down the motion equation for the model system (1) in the new
Fermi operators keeping in mind their previous form:

i% = Tras — Apal(2ptg +7),
.da} i (13)
i = —Tray + Ap(20g +1)a—y.
Taking into account (11) we introduce new Fermi operators:
af=aruf+ alw ,
e o
Qp =aguf +a_yvy.
day da;ﬁ

By differentiating (14) with respect to ¢ and the expressed derivatives —f, —r
through the right-hand side of motion equation (13) we obtain

dot da’ d
Ay Sy a_yf
7 a 1y a +zvf—d

= ug{=Tya} + Ar(209 + r)a_s} + v {Tra_g + Apal(2¢'g + 1)}
= —al{Tyus — Apvs(20Tg + 1)} + {uphp(209 + 1) + 05Ty }ag
= — a}{Tfo —Apvp(2Cg + )} + {Uf)\f(QCg +7)+ vaf}a,f

+urdr(209 — 2Cg)a_ s +vpApal (2079 — 2Cy) .

Taking into account the identity equations,

Trus = Apvp(2Cg +7) = /(2Cg +7)2X3 + T2,

Trvp + Apup(2Cg+1) = \/(209 +7)20} + TFof,

we find the motion equation in new Fermi operators:

o +Espal =R
1— fOap = Ifif,
dt f (15)
oy i
ZW —EfO[f = _Rf7
where
Ry = RY + R, (16)
Ry = ushs(209 —20g)ay, Ry =vpdsaj(2plg—2Cg).  (17)
B = \/(20g+r)2A§ + T2 (18)

Let us consider now the correlation function:

(as(t) - B(0)), (19)
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where B(0) represents some product from s Fermi operators. Let us write down the
equation for averages by differentiating Eq. (19) with respect to ¢, and using the
motion equation:

. d

i—-{as(t) - BO)r = Erlag(t) - BO)r — (R}(t) - BO)r, (20)
z’%(a}(t) -B(0))r = —Eﬂa}(t) -B(0))r — (Rs(t) - B(O))r . (21)

The solution of this equation is given by

(s () - BO)r = (s (0) - BO))re Bt + i~ P! < / CEIR(Y) B(O)dt'>F 7

<a}(t) B(0))p = <a}(0) -B(O)> Bt _ it </Ot B R(H)) -B(O)dt’> ,

T

N

from which we get

a . —la . e Bt teiEft " /
s (8) - BOYr — (o (0) - BO)re 57| < ]< | e B(O)dt>r L)

ol . —(at(0)- it tefiEft N /

[(@h(8)- BO))r — (ah(0) - BO))re™s"| < ]< [ e En) B(O)dt>r (23)
To construct the following estimation we use the inequality:

(Y- W < (YY) - [(wiw)|}e (24)

The proof of this inequality and its spectral analog is given in Refs. 14-19. Making
estimations of the right-hand side of Egs. (22) and (23) and using inequalities (24),
we obtain

’< /O t e PR () - B(o)dt'>F

< /0 (et RY(t) - B(0))r|dt’

- /0 {IRL@) - Rr@)r] - [(B1(0) - BO))y. |} 2t

< [t1{|(R}(0) - Ry (0))r] - |(BT(0)- BO))r|}Z. (25

By analogy way we get estimates:

‘</Ot e IRyt -B(O)dt’>F

< /0 (e st R}(t’) - B(0))r|dt’

< [t {|(Ry(0) - RE(O)r| - [¢B7(0) - BO))r|}*
(26)

Let us find now estimates for the correlation function

(RE(0)- Rp(0)r,  (Ry(0)- RH(0))r (27)
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in the right-hand side of inequalities (25) and (26). Using formulas (16)—(18) we
write

[(R}(0) - By (0))r] < 2(R}V(0)- R (0)r +2(R}(0) - B (0)r
< 8¢°M} (uj(al (o1 = O)(p = O)a—s)r
+v3{(¢ — Cagal (ot — O))r).
Notice that ay - a} is a positive operator with norm bounded by unity, so we find

(¢ — Clasal (e’ — C)r < (g — C)(¢" - O))r.

Let us estimate now the correlation averages:

(a' (" = C) (e = Ca_g)r.
Keeping in mind that

(P =C)Ne—C)=(p=C)p" = C) + oo — pp!

k
<|eTe—wo |+ (@ =)t = CO)| . |oTe —wpl| < ﬁ
we obtain

(ol 46!~ O)e ~ Ohasir < o2 4 {(p— Chal ya_s(6! — O
<24 (e - Ot~ Ohr

Thus,

<R}(0) - Ry (0))r < 8¢\ <<(<p —O) (" =) + ufk3> .

Y (28)

With estimations:

(R£(0)- RHO))r < 2(RY(0) - RIMV(0))r +2(RP(0) - RI® (0))r

< 8¢°M\; (ui{(p — Cla_gal (o' — O))r

+ vial (e’ — C)(p — C)ag)r),
(¢ — Ca—gal (! = O < (0= C) " = Or,
(ah (e = O) (e — Oag)r < (al(p — C) (@' = Cay)r

k3
oy

k3

< (= O)afas(e" = Cr + 517
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we get the following inequality:

1}2
(Ry(0) - By (0))r < 892X (¢ <so —O)( — C))r + ;é) . (29)

Finally, the inequalities (28) and (29) can be rewritten in the form:

(R (0) - Rp(0))r < 8¢°A2 {<<ga —C)gt - O+ f—v} 7 (30)
(R0 BJ O < 862 {0~ O = O+ 55} 3D

Notice that we can estimate the correlation averages ((¢ — C)(¢" — O))pr with
Eq. (13), using the asymptotic closeness free energies, and further with respect to
the lemma in Ref. 3 prove that

(=)'~ <0 (.9

(" = O~ O <0 (.9 |

where 50(%, 0) is the expression for V' — oo, and any positive fixed J tends to zero.
Then, the estimations (30) and (31) can be rewritten as

(RY(0) - Ry(0))r < & (éa) 7 (32)
(Rs(0)- RLO)r < € (%6) : (33)

1 o242 1 ks
5<V75> =8g°A} {50 (V’CS) +2V} —0

for V' — oo and any fixed § > 0. Then, after making these transformations, we take
into account that

where
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where operators ¢ (t) = age™ ‘Ert, d} (t) = aéeiEft satisfy the motion equation with
approximating Hamiltonian (5). From inequalities (34)-(36) we construct major
estimations, which represent the asymptotic closeness correlation functions

(@t (0)BO)r ~ (ah(0)BO)ro  as V—o00 and §>0.

Let us write down the spectral representation'® 1 as
+oo )
(@b (1) BO) = [ Turs(w)e dw, (37)
+oo - )
(B(0) - al(t)) = Taigw)e? - e“tdw . (38)
Then we find a function
1 [T (1 -E :
hy(t) = %/ {;F (“’ ; f) } e tdu (39)
1 - E too ,
F (%) :/ h,(t)ei“tdt (40)
where
F(z)=0 for |z|>1, (41)
F(z)=(1-2%2 for |z|]<1.

Multiplying inequalities (35) and (36) by a function h,(t), integrating on t (—oo <
t < 400) and taking into account the spectral representations (37) and (38) we get

‘ / st ( - ) do — {a}(0) - BO)) | < 21220 (52,5) . (42)
’/J:O Tatp(W)F (w _pEf> e dw — (B(0) - a}(0)>p < &2 (?5) L 43)

where (3, 0) tends to zero as V' — oo and for any fixed positive § > 0. Multiplying
E
the inequality (43) by a factor e~ and subtracting the inequality (42), we get

_Er
[2]

<52(vi1’5> <1+e + —+‘/+°°jm (w Ef){ %Ef_l}d“’“

(44)
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Let us estimate the second term of Eq. (44):

[ st (S {7 <)
< [ st [ (455

o +oo % +oo %
<lef <1 ([ gutne) ([ T (i)

— 00

w—Ef

e 0 —1‘dw (45)

taking into account definition (41). Notice that

+oo
3 Taat (W)dw < [(a(0) - a’(0))p| <1, (46)
+oo
3 Tt (w)dw < [(BT(0) - BO))r| <1. (47)

Taking into consideration the inequalities (45)—(47) we rewrite Eq. (44) as

Er
[2]

(@} (0) - BO)r — (B(0) - a}(0))r - e

1 1 Ey o
<52<V75>'F<1+69>+‘69—1‘. (48)

p is a positive arbitrary value in all the above inequalities. The inequality (48) will
hold for any positive p. To show the asymptotic smallness for some p-function from
82(%76) for V. — oo and for any positive value § > 0, p — 0 and, on the other
hand, strengthen inequality (48), we find for the p-function:

()

Rewriting the inequality (48) with some identity transformations:

<& (%5) (1+e—%)+ye”ﬁ —1

E Ef
BCA

(! Byr+(a Byre™ 7 — (af B+ Bal)re

or

_E

(alB)p — —— - {a}B + Bal)r
14+e 7

e (L 5)zgh (L)l
2 V7 — C9 V; 1+67%.

<& (%5) , (49)

where
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and applying the induction method we can prove for any n that
= (1
Al = (0 = (i, | <10 (.0 (50)

Here H designates the product of Fermi operators of order n, II = const.,
E2(%,8) — 0 as V. — oo and for § > 0. According to our designation, H may
be presented as 'H = a}B7 H =asB, H = Bay, H = Ba}, where B presents the
product operators (n — 1).

It is sufficient to consider one of these cases by analogous reasoning. Let us
consider, for instance, the case if H = a}B. It follows from Eq. (49) that if <a}B>
consists of n operators, then (a}B +Ba}> consists of (n—2) operators. Here numbers
n > 2, n are even. Notice, that we consider only the averages with even number
n of Fermi operators, because averages constructed from an odd number of Fermi
operators are equal to zero due to selection rules. Putting in Eq. (49) B = ay, we

have

" 1 = (1

(afag)r — —5| < 2(—,5) .

d 1+6_% 4

but if
" 1
<a}af>1‘0 = By
(1+e7)

then

- 1
[(alas)r — (alas)r,| < & (V’6> :

: Ty.

By analogy we obtain for <afaf>.
Ey
e

; _ /1
|<afaT>F —(afay)r | <& (—,5) , where (afaT>F S —
f flto 1% f/to (1—"—6%)

As we can see, the inequality (49) holds for n = 2. It is possible to verify it for
n =4, n=06,... and so on. To prove this inequality for any n suppose that

= (1
§H5'52 (V76> .

IIs=const

_Er

e ° t T
——(a}B + Bal)r,

(afB)r — ——;
1+e™ 7

Taking into account that
_Er
<a}B>F0 =e 9 <Ba}>F0
we have

|As| = [} B)r — (a}B)r, | <TI, - &, (é 5) 7 (51)
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where the right-hand side for V' — oo and for any § > 0 tends to zero. Further, on
the basis of this proposition we prove the truthfulness of Eq. (51) for n = s 4 2:

- 1
[Asio| <Tspo- & (V’(S) :

So, from the true inequality (51) this is true for n = s and for n = s + 2. And for
n = 2 this inequality holds true, consequently the same holds for n = 4, n = 6,
and so on. By successively adding a pair of operators it is possible to construct
any even number of operators, so the inequality assertion (50) holds for any even
number n. With arbitrariness H we can apply inequality (50) to any possible set of
Fermi operators.

Remember that here we do not consider any arbitrary combination of Fermi
operators but only that which does not convert to zero averages:

(H)r, (H)r, -

It is convenient to consider the normal product of operators when all creation
operators stay on the left of the annihilation operators. It is clear that any arbitrary
order of following operators can always be reduced to the normal form. Let us take
into consideration that “old” Fermi operators connect with “new” ones with respect
to the canonical transformation U —V; (Bololiubov transformations) with bounded
coefficients Uy, Vy.

Thus we have

[(H)r — (H)r,| < T - & (%ﬁ) , II' = const.,

where gg(%ﬁ) for V. — oo and for positive number § tending to zero. Here we
consider averages without time dependence. However, for two time dependences or
many time dependences the analogous correlation for correlation functions can be
considered by the induction method.

In the case of s time correlation functions:

(Ha(t1)Ha(t2) - Hs(ts))
where
Ha(t) = Aj () -~ Al (L))
and AJ(t;) is equal to a(t) or to a}(t); we find
[(Ha(t1) - Hs(ts))r — (Hatr) - Hs(ts))r, |
@t bt Q-+ Q)& (0] 62

Here Q, Qo, ..., Qs are constants if V — ooc.
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We notice that it is possible to get in “z-representation” the analogous asymp-
totic inequalities for a large system (V' — o0). Now we consider the correlation
averages composed of the product of the field functions:

1 .
U, (r,t) = 7 Z apo (1) PT) |
()

, 1 )
Ul(rt) = 7 Z a;ga(t)e_l(p'r) .
(p)

Here the summation runs as before over the set of quasi-discrete p. We consider
averages composed of a product of operator field functions, constructed on the basis
of model and trial Hamiltonians I and T'y, (¢, (r1,¢1) - Yo, (s, ts))r.1, , Where s
is an even number (for odd s the averages are identically zero) and where

Yo (r,t) =W, (rt) or \Ili(r, t).

(53)

By virtue of Eq. (53) we can write

1 e (oo
Polrt) = — D Ao ()P,
(p)

where
Apﬂ(t) = apa(t)7 E=-1 if o= \I/T’
thus

(Do, (T1,t1) -+ - 0o, (T, t5)>F7Fa

1 .
=77 Z (Apo (t)---Ap . (t)>nra€z{81(m-n)+---+£s(ps-rs)}_ (53a)
5 0

P1..-Ps

Let us consider the difference:

(@or (r1,11) 0o, (T3 ts))T = (Poy (T1581) =+ P, (755 Es))T

and show that it tends to zero or (V' — 00). Recall that in this theory of generalized
functions the following formula

Fy(ri,...,rs) = F(ri,...,1s),

(54)
F(ri,...,rs) = lim Fy(ry,...,rs),
V—oo
is called generalized convergence. Consider the class C(q,v) (where g and v are pos-
itive numbers) of continuous and continuously differentiable functions h(ry,...,rs)
such that
{re] + -+ \Ts|}§:o,1,2,...,u |h(rq,...,7s)| < const.
and
onttasspy

< const.

{ri]+ -+ |r| ) ’8)({171@-"8)(%5

35,0
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(.7 :071727"‘7V;q1 ++q3s :0717"'7Q;al = 13273)
in the space E* of points (r1,...,rs). Here
(X1, Xi2, Xi3) =11

Then, if we fix positive numbers ¢ and v in such a way that the relation

/h Tiye..,T FV(rl,...,fs)dfl---dfs—>/h(fl,...,fs)F(fl,...,fs)dfl---dfs
(V — o0)
is valid for any functions h(71, . ..,7s) from the class C(g, v) there is said to be gen-

eralized convergence (54). For our purposes we shall confine ourselves to examining
the class £ = C(I, v) in which the numbers ¢; and v; are chosen in such a way that

the Fourier transform of the functions h(7y,...,7s):

h(pl,...,pS /h Fiy. .., Tg)ePrmittbee) gu oo g
is a continuous function of p1,...,ps in the whole space E*, and satisfies the in-
equality:

7 K

‘h(pla"'aps)’ < H_‘?:1(|P—;\2+Mh)’
Kp, = const. >0, (55)
My, = const. > 0.

It is possible to show for any function h(7,...,7s) in the class £:

/hm,..., N pos (11,11) - -+ 0 (1, £) )0 - - - s

/h’ T1y...,T wal(rlvtl) @Us(Tsats»Fod'Fl"'dfs — 0

as V — 0.

Re-expressing the above-mentioned expression with the use of (53a) it is possible
to prove that

% Z hglply---agSPS){<Ap101(tl)"'-Apsos(ts»l“

- <«4p1a1 (t1) -+ Ap.o.(ts))r,} — 0. (56)

Here the summation runs over the points pi,...,ps of the quasi-discrete set Ey,.
We shall thereby also prove that in the generalized sense:

(@oy (T1,t1) 00, (rs, ts))r = (o (r1,t1) -+ o, (s, Ts))r, — 0 (57)

as V — 0.
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The question may arise why considering the averages of products of an operator field
function we have proven only the generalized convergence (57). The point is that,
even at fixed volume V', the sums representing the actual averages can, generally
speaking, be divergent in the usual sense. Thus even in the simple case we can see
that the average:

1 ,
(Uy (1, t1) W] (19, t2))r, = v Z (py oy (t1) - a;f)QUQ(t1)>rael{(Pl.r1)—(P2-r2)}
P1,P2

is convergent only in the generalized sense, and this expression is defined only as a
generalized function of 1,7 even for finite volume V.

Acknowledgments

S. Kruchinin is grateful for financial support by INTAS (654).

References

1. N. N. Bogolubov Jr., “On model dynamical systems in statistical mechanics,” Physica
32, 933-944 (1966).

2. N. N. Bogolubov Jr., Method for Studying Model Hamiltonians (Oxford, Pergamon,
1972).

3. N. N. Bogolubov Jr., E. N. Bogolubova and S. P. Kruchinin, “Calculation of correla-
tion function for superconductivity,” New Trends in Superconductivity, Proceeding of
the NATO Advanced Research Workshop (Kluwer Publishers, 2002), pp. 277-291.

4. N. N. Bogolubov Jr. and D. Ya. Patrins, “A class of model systems admitting a
reduction of the degree of the Hamiltonian in the thermodynamic limit: I,” Tsar.
Mat. Fu. 33, 231-245 (1977).

5. N. N. Bogolubov Jr. and E. N. Bogolubova, Ukrainian Journal of Physics 45, 4-5
(2000).

6. J. Bardeen, L. N. Cooper and J. R. Schrieffer, “Theory of superconductivity,” Phys.
Rev. 108, 1175-1204 (1957).

7. N. N. Bogolubov Jr., D. N. Zubarev and Yu. A. Tserkovnikov, “On the phase transi-
tion theory,” Dokl. Akad. Nauk SSSR 117, 788-791 (1957).

8. N. N. Bogolubov Jr., D. N. Zubarev and Yti. A. Tserkovnikav, “Asymptotically exact
solution for a model Hamiltonian in the theory of superconductivity,” Zh. Fksp. Teor.
Fiz. 33, 120-129 (1960).

9. N. N. Bugolubov Jr., V. V. Tolmachev and D. V. Shirkov, Navyi metod v teorii
sverkhprvoodimosti (A New Method in the Theory of Superconductivity) (Akad. Nauk
SSSR, Moscow, 1958).

10. N. N. Bugolubov Jr., On the Model Hamiltonian in the Theory of Superconductivity,
Preprint R-511 of the Joint Institute of Nuclear Research (JINR), Dubna, 1960.

11. J. M. Blatt, Theory of Superconductivity, 2nd edn. (Academic Press, New York,
London, 1971), pp. 227-239.

12. P. Hertel and W. Thirring, “Free energy of gravitating fermions,” Math. Phys. 24,
22-36 (1971).

13. 1. P. Bazarov, DAN USSR 140, 85 (1961).

14. N. N. Bugolubov Jr. and E. N. Bogolubova, Vuedenie v kvantovuyu statisticheskuyu
mekhanika (An Introduction to Quantum Statistical Mechanics) (Nauka, Moscow,
1984), pp. 92-104.


https://www.researchgate.net/publication/300826198_Calculation_of_Correlation_Functions_for_Superconductivity_Models?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/300826198_Calculation_of_Correlation_Functions_for_Superconductivity_Models?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/300826198_Calculation_of_Correlation_Functions_for_Superconductivity_Models?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/284482303_An_asymptotically_exact_solution_for_a_model_Hamiltonian_in_the_theory_of_superconductivity?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/284482303_An_asymptotically_exact_solution_for_a_model_Hamiltonian_in_the_theory_of_superconductivity?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/243620360_On_model_dynamical_systems_in_statistical_mechanics?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/243620360_On_model_dynamical_systems_in_statistical_mechanics?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/236414590_Theory_of_Superconductivity?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/236414590_Theory_of_Superconductivity?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/234238605_On_the_Theory_of_Phase_Transitions?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/234238605_On_the_Theory_of_Phase_Transitions?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/233934928_Theory_of_Superconductivity?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/233934928_Theory_of_Superconductivity?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/226962329_Free_energy_of_gravitating_fermions?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/226962329_Free_energy_of_gravitating_fermions?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==

724 N. N. Bogolubov, Jr., E. N. Bogolubova & S. P. Kruchinin

15.

16.
17.

18.

19.

20.

21.

22.
23.

N. N. Bugolubov Jr. and E. N. Bogolubova, Model Problems of Polaron Theory
(Gordon and Breach Sci. Publ., London, 2000).

D. N. Zuubarev, UFN 71, 71 (1960).

N. N. Bogolubov Jr. and B. I. Sadovnikov, Some Questions of Statistical Mechanics
(Visshaya Shkola, Moscow, 1975).

V. L. Bonch-Bruevich and S. V. Tyablikov, Green Function Method in Statistical
Mechanics (Nauka, Moscow, 1961).

N. N. Bogolyubov Jr., Quasi-averages in the Problems of Statistical Mechanics,
Preprint D-781 JINR, Dubna, 1961.

N. N. Bogolubov Jr., The Hartree-Fock—Bogolyubov Approximation in the Models
with Four-Fermion Interaction, Proceeding of the Steclov Intitute of Mathematics 228,
252-273 (2000).

N. N. Bogolyubov Jr. and A. V. Soldatov, “The Hartree-Fock-Bogolyubov approxi-
mation in the models with general four-fermion interaction,” Int. J. Mod. Phys. B10,
579-597 (1996).

P. Ring and P. Schuck, Problems of Many Bodies (Springer-Verlag, New York, 1980).
N. N. Bogolyubov Jr., “Construction of limit relations for many-time means,” Teor.
Mat. Fiz. 4, 412-419 (1970).


https://www.researchgate.net/publication/285992412_Hartree-Fock-Bogolubov_approximation_in_the_models_with_general_four-fermion_interaction?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/285992412_Hartree-Fock-Bogolubov_approximation_in_the_models_with_general_four-fermion_interaction?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/285992412_Hartree-Fock-Bogolubov_approximation_in_the_models_with_general_four-fermion_interaction?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/243165803_Construction_of_limiting_relations_for_many-time_averages?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/243165803_Construction_of_limiting_relations_for_many-time_averages?el=1_x_8&enrichId=rgreq-dccbfc3295b38fb0d045639fcac76f79-XXX&enrichSource=Y292ZXJQYWdlOzI4NTk5MjM2ODtBUzo0Mzg4ODY5MjYxNjM5NjlAMTQ4MTY1MDIwNTcwMw==
https://www.researchgate.net/publication/285992368

