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Non-circular n–p–n-Junctions:

Quasi-relativistic Pseudo Wave

and Potentials
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Abstract In our work, we build an atomic-like GQD-model and look for a
GQD pseudopotential barrier, which is given by a set of well pseudopotentials
for individual carbon atoms of the GQD. Numerical modelling of large-size
GQDs has been performed in hydrodynamic approximation. It has been shown
that pseudopotential removes degeneracy of energy levels for GQD-supercell and
localizes valent electrons of the GQD-model on holes of n–p–n graphene-junction.
Non-spherical symmetry of GQD wave functions leads to lifting of spin and valley
degeneracy.
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4.1 Introduction

Nanoscale graphene quantum dots have the form of a quasicircle with a radius in
the range from 3 [1] to 10 nm [2]. The parabolic confinement potential well has
been used to calculate energy levels of a non-relativistic quantum dot [3–6]. But
the results of such simulations describe only the low-lying part of the dot energy
spectrum correctly.
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In the paper [8] using the scanning tunnelling microscope (STM) it has been
managed to form large quantum dots of the type of circular n−p−n and p−n−p
junctions of graphene with a radius of about rdot ∼ 100 nm and atomic-like
distribution of the electron density has been established. In such an approach the
equivalence has been assumed on the change of the problem of motion of holes
and electrons in the potential well (−κr2) and (+κr2) respectively, to the problem
on scattering by the barrier (−κr2) and (+κr2) for electrons and holes respectively
with a sufficiently high repulsive potential at the distance L far from the boundary of
the quantum point so that L ≫ rdot. Naive considerations of the equivalence of such
a change lead to the following unpleasant feature of the model as an appearance
of false hole states (spurious states) at r = 0, L (see section “Methods” in [8])
stipulated by the effective infiniteness of the well that is not a good choice for
any Dirac problem. Usage of massless Dirac equation with a finite height step-
like radial positive potential (barrier for electrons and well for holes) allows to
perform correct relativistic simulations of electron density in the circular graphene
n−p−n-junctions of the sizes 5.93 and 2.76 nm [1]. Despite the roughness of such
calculations in comparison with the parabolic barrier, the theory and experiment
should approximately coincide or, at least, qualitatively coincide if the assumption
is valid on formation of a circular n−p−n-junction by mean addition of the step
barrier to Dirac cone. But the relativistic simulation results satisfactory describe the
only high energy level of the graphene quantum dots (GQDs), and the divergence
between theoretical results and experimental data grows with the increase of GQD
radius. Thus, relativistic barrier GQD models turn out to be inappropriate in the
low-energy limit, and conversely, non-relativistic GQD models with a potential well
do not work well in the high-energy limit.

Theory and experiment can be directly compared near graphene QD center and
for following cases only: a scanning tunneling microscope (STM) tip radiuses rtip
are more than 70 nm or less than 20 nm. Electrically confining potentials have
Gaussian shape for rtip ≤ 20 nm [7, 10]. The tight binding calculations (TB) in
this case [8, 9] are applicable to the description of the behavior of wave functions in
a QD-center only. Electrically confining potentials have cos-shape for rtip ≥ 70 nm
[10]. Tight binding calculations (TB) in this case are applicable for the description
of the wave functions in a QD center only. At present, there are no satisfactory
methods for calculating GQDs and GQDs of large sizes.

In our work, we propose an atom-like GQD-model and look for a GQD
pseudopotential barrier, which is given by a set well of potentials for distinct carbon
atoms of the GQD.

4.2 An Atom-Like Model of Graphene Quantum Dot

A graphene quantum dot, consisting of Ndot carbon atoms is show schematically
in Fig. 4.1a. Let a model GQD be considered as a “large atom” whose core i-th
electrons are pz-electrons of j -th C atoms, j �= i. k-th pz-electron of k-th C atom
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Fig. 4.1 (a) Scheme of graphene quantum dot: i-th atom C of GQD is located at i-th site with
radius vector Li , and r is a radius vector of pz-electron on respect to i-th lattice site. O is a reference
point. (b) Graphene quantum dot super-cell from 51 × 51 primitive cells (100 × 150 Å)

plays a role of an external valent electron. Let k-th C atom is place in the lattice site
with a radius-vector Lk . The radius vector r will be calculated on respect to nearest
lattice site and is a radius vector of the electron in an atom. Radius vector Xk of the
valent electron of k-th atom reads Xk = Lk + r.

Model graphene quantum dot has been constructed in the following
way. Graphene primitive cell has basic vectors b1 = a(3/2,

√
3/2), b2 =

a(3/2,−
√

3/2) and two atoms (A and B) in the cell. Here a is the length of
sp2-hybridized C-C bond. We construct a supercell of the same symmetry type
consisting of (2n1 + 1)(2n2 + 1) primitive cells for n1 = 25, n2 = 25, that is shown
in Fig. 4.1b.

Electronic band structure simulations in folding zone approximation gives the
following set of eigenenergies ±ǫLk

(qi) and eigenstates ψ
(0)
i (∓qi, r + Lk) =

e∓ıqi ·(r+Lk)u(r + Lk) for quasi-particle excitations of GQD:

{

±ǫLk
(qi), ψ

(0)
Lk

(

∓qi, r + Lk

)

}

i,k=1,...,Ndot
, (4.1)

where qi is the wavevector of i-th quasi-particle located in k-th lattice site, upper
sign “+” is related to electrons and lower to “−” corresponds to holes.

Now, let us construct the pseudopotential for atoms C in GQD.

4.3 Pseudo-potentials for Atoms C in Quantum Dot

Let us consider n−p−n-junction. Fock operator describing non-paired valent
electron in many-electron system can not be considered as a Hamiltonian one [11].
But the procedure of the secondary quantization restore the Hamiltonian property
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of the many-electron system by adding the operator of the “hole” ǫ̂† to the Hartree-
Fock Hamiltonian of m-th electron, scattering at a point ri [12]:

[

H(ri) + V̂ sc(xi) − Σ̂x(xi)
]

ψm(xi) =



ǫ(0)
m −

n
∑

j=1

ǫ̂†Pj



ψm(xi), (4.2)

where V̂ sc(xi) and −Σ̂x(xi) are operators of the Coulomb and exchange interac-
tions respectively; H(ri) is one-particle Hamiltonian without taking into account
inter-electronic interactions, ǫ

(0)
m is an eigenvalue of H(ri), xi = {ri, σi}, σi is the

spin of i-th electron, Pj is a projection operator, n is a number of electrons in a
system.

Let us suppose that in the representation where the operator ǫ̂† is a diagonal
one, i-th electron with a radius-vector Lk + r has been scattered on k-th atom with
appearance of i-th hole with momentum q, i �= k at Klein tunneling in the vicinity
of the site with radius-vector Lk . In this representation Eq. (4.2) is written as

[

H(ri) + V̂ sc(q xi) − Σ̂x(q xi)
]

ψm(q xi) =



ǫ(0)
m −

n
∑

j=1

ǫ̂†Pj



ψm(q xi),

(4.3)
where ǫ̂† = ǫ̃i(q)Î , Î is an operator unity in non-relativistic case or the identity
matrix σ0 for the Dirac equation. The inverse Fourier transformation

Vi,Lk
(r)ψm(xi) =

∫

eiq·(r+Lk)ǫ̃i(q)σ0ψm(q xi)dq (4.4)

gives a nonrelativistic scattering potential. After calculating (4.4) we get

Vi,Lk
(r) = −2πǫLk

(qi)Θ

(

qi − 2π

r

)

σ0 = −2πǫLk
(qi)Θ (λi − r) σ0, i �= k;

(4.5)
where q → 0, r ≤ a, λi = 2π

qi
. The potential (4.5), some well-known model

potentials and a potential reconstructed based on experimental data are shown in
Fig. 4.2. For a finite set of eigenenergies ǫLk

(qi) the potential results to some stair-
case like potential which resemble the experimental one shown in Fig. 4.2b.

Further, a correct quasi-relativistic approximation of the pseudopotential for a
graphene quantum dot will be constructed, and calculations of the valence orbitals
of GQD will be performed based on the pseudopotential method.

Appearing after scattering of an electron on an atom hole with momentum qi

and radius-vector Lk + r is always “frozen” in the vicinity of some lattice site with
radius-vector Lk . Due to the fact that such i-th hole together with electron belongs to
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Fig. 4.2 (a) Model scattering potentials for the quantum dot (n–p–n junction): a circular well
pseudo-potential Vi,Lk

= −ǫLk
(qi)Θ (λi − r) ≤ 0 of the “frozen” atom with a size a (red curves);

parabolic potential (−κr2) with a large repulsive potential outside the graphene quantum dot [8]
(black curves); a circular barrier potential V = +V0Θ(rdot − r) ≥ 0 of radius rdot, V0 > 0 (blue
curves) see e.g., [13] and references therein. (b) Reconstructed potential based on experimental
data of [9]

“frozen” k-th atom, i �= k, so in some sense internal “core” electron of the atom-like
model GQD gains some additional binding energy of the electron-hole pair. Binding
energy for every core electron is given by the set of quasi-particle energies (4.1). In
the atom-like model GQD the valent electron is k-th electron which is scattered
(binds) on its own k-th atom C. The valent electron is described by (4.3) in an
approximation of the frozen core. In the approximation of the frozen core, matrix
elements ǫkc of the hole energy operator ǫ̂†, c �= k is approximately defined by the
difference between the energy level of k-th atom C with valent GQD-electron and
energy levels of c-th atoms C with core GQD-electrons:

ǫkc =
[

E
(0)
k − E(0)

c

]

, c �= k, (4.6)

where E
(0)
k is the energy of the valent electron, E

(0)
c are eigenvalues of the equation

[

HD,c + Vc,Lk
(r)
]

ψc(r + Lk) = E(0)
c ψc(r + Lk), c �= k. (4.7)

To get E
(0)
k , it is necessary to write down the equation for eigenvalues and

eigenfunctions for valent electron

HD,kψk(r + Lk) +
∑

c �=k

ǫkcPcψk(r + Lk) = ǫ(0)
m ψk(r + Lk). (4.8)

Operator
∑

c �=k ǫkcψc(r + Lk) entering into (4.8) is a QDT pseudo-potential. The
solution of the Eq. (4.8) can be obtained by the successive approximations/ In zero
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approximation we account of small differences between
[

E
(0)
k − E

(0)
c

]

, k �= c:
[

E
(0)
k − E

(0)
c

]

≈ ǫm for the frozen core. Here ǫm is a constant. Then due to the

arbitrariness of the zero energy point we assume ǫm = ǫ
(0)
m and (4.8) is rewritten as

HD,kψk(r + Lk) = ǫ(0)
m



ψk(r + Lk) −
∑

c �=k

ǫkcPcψk(r + Lk)



 . (4.9)

Let us designate the expression



ψk(r + Lk) −
∑

c �=k

Pcψk(r + Lk)



 (4.10)

through ψ
(0)
v,Lk

(r + Lk). It and (4.9) define a zero-order approximation for valent
orbital

HD,kψ
(0)
v,Lk

(r + Lk) = E
(0)
k ψ

(0)
v,Lk

(r + Lk). (4.11)

Substituting eigenvalues E
(0)
k of (4.11) into (4.8), we find the equation for eigen-

functions and energy levels of k-th electron for

HD,kψk(r + Lk) +
∑

c �=k

ǫkcψc(r + Lk) = E
(1)
k ψk(r + Lk). (4.12)

Taking into account the equality ih̄ ∂
∂t

ψk(r + Lk) = E
(1)
k ψk(r + Lk). Then, the

set







HD,kψk(r + Lk) +
∑

c �=k

ǫkcψc(r + Lk) = E
(1)
k ψk(r + Lk)







Nqdots

k=1,r→a

(4.13)

can be considered in the continuous limit (hydrodynamic limit) |Lk+1 − Lk| → 0.
Since the energy of electrons in the sites differs on the energy of quasi-particle
excitation ǫkc = ǫci

, Eq. (4.13) describes an electron moving in GQD:

〈

Rqdot
∣

∣H
qdot
D

∣

∣

∣
Ψ

qdot
v

〉

+
Ndot−1
∑

i=1,ci �=v

ǫci
(Rqdot)

〈

Rqdot
∣

∣ Ψ
qdot
ci

〉 〈

Ψ
qdot
ci

∣

∣

∣
Ψ

qdot
v

〉

= E
qdot
v

〈

Rqdot
∣

∣ Ψ
qdot
v

〉

.

(4.14)



4 Graphene Quantum Dots, Graphene Non-circular n–p–n-Junctions:. . . 53

Here

VGQD =
Ndot−1
∑

i=1,ci �=v

∣

∣

∣
Ψ

qdot
ci

〉

ǫci
(Rqdot)

〈

Ψ
qdot
ci

∣

∣

∣
(4.15)

is a GQD pseudopotential,

〈

Ψ
qdot
ci

∣

∣

∣
Ψ

qdot
v

〉

=
∫

〈

Ψ
qdot
ci

∣

∣

∣
R′

qdot

〉 〈

R′
qdot

∣

∣

∣
Ψ

qdot
v

〉

dR′
qdot

is a scalar product, respectively, of these wave-functions
∣

∣

∣
Ψ

qdot
ci

〉

and
∣

∣

∣Ψ
qdot
v

〉

of core

and valent electrons of GQD:

〈

Rqdot
∣

∣ Ψ
qdot
j

〉

≡ Ψ
qdot
j (Rqdot) ∈

{

ψ
(0)
Lk

(

∓qj , r + Lk

)

}Nqdot

k=1, r=a
, (4.16)

ǫci
(Rqdot) ∈

{

±ǫLk
(qi)
}

k=1,...,Ndot
; ψ

(0)
Lk

(∓qi, r + Lk) and ±ǫLk
(qi) belong to the

set (4.1), and for the valence electron the latter are an eigenvalue and a wave function
for the same folding zone, and for the core electron they belong to different folding
zones.

4.4 Simulation Methods

Quantization conditions can be obtained by “folding zones” applied in both
directions allowing by quantum-dot symmetry. The quantization condition for the
collective excitation with a wave-vector k = (kx, ky) for graphene nanotube with a
chiral vector C reads

k · C = 2πm, m = 0, 1, . . . , N. (4.17)

Analogous, for the quantum dot we have to choose the following vectors as the basis
vectors C1 = (2n1 + 1)b1, C2 = (2n2 + 1)b2 of the supercell, this results to the
following systems for quantized wavevectors

(2n1 + 1)b1 · k = 2πm1, m1 = 0, 1, . . . , N;
(2n2 + 1)b2 · k = 2πm2, m2 = 0, 1, . . . , N,

(4.18)

where N2 is a number of π (pz)-electrons. Discrete set of energies is indexed by two
integers m1, m2 and is based on graphene energy band spectrum ǫ(k). The last is
used to find a distance from kmn = (km, kn) to a nearest Dirac point for a given
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m, n. As a graphene model we use the earlier developed quasi-relativistic one in q4

approximation for the exchange interactions (see detail in [14, 15]). The massless
Dirac fermion model for graphene band structure is known to be good enough as a
low energy excitations description up to 1 eV. For the quantum dot we have to work
with the whole rather than the first Brillouin zone. This means accounting the k aside
the Dirac cone apex in such a way to choose the nearest K-point used for energy
evaluation. As an initial wave functions set for graphene quantum dot model we use
the N2 plane waves with appropriate kij and construct the lattice representation of
this set in accord with the quantization condition (4.18). Spinor component of the
waves are constructed as solutions of the appropriate Dirac-like equation within the
framework of the graphene model [15].

Quantum Mechanics perturbation theory for non-orthogonal eigenfunctions sets
should been used. Non-perturbed problem for the system (4.14) reads

H0

∣

∣

∣
ψ

(0)
i

〉

= E
(0)
i

∣

∣

∣
ψ

(0)
i

〉

(4.19)

where the energy is determined as Ei = E
(0)
i + ∆Ei . The solution of the perturbed

problem

(H0 + V ) |ψi〉 = Ei |ψi〉 (4.20)

for the state |ψi〉 is sought as a series on unperturbed eigenstates
∣

∣

∣ψ
(0)
i

〉

in the form

|ψi〉 =
∑

k

cik

∣

∣

∣ψ
(0)
k

〉

. (4.21)

After substitution (4.21) into (4.20) one gets

(H0 + V )
∑

k

cik

∣

∣

∣
ψ

(0)
k

〉

= (E
(0)
i + ∆Ei )

∑

k

cik

∣

∣

∣
ψ

(0)
k

〉

. (4.22)

Scalar multiplying both sides of the last equation on 〈ψm| and simplifying we get
the generalized eigenvalue problem

∑

k

cik

(

Vmk − ∆Ei Sij

)

= 0 (4.23)

where Vmk =
〈

ψ
(0)
m

∣

∣

∣
V

∣

∣

∣
ψ

(0)
k

〉

, Sij =
〈

ψi |ψj

〉

is the overlapping integral. The

eigenenergies are given by

Det
(

V̂ − ∆E Ŝ
)

= 0. (4.24)
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Simulations with pseudopotential (4.15) has been performed for lowest 40 levels.
First order corrections for the energies and wave functions have been calculated.

4.5 Numerical Results and Comparison with Experiment for

Electrostatically Confined QDs in Monolayer Graphene

Comparison of two spectra, initial one and the first perturbation theory results are
shown in Fig. 4.3. As one can see, the perturbed spectrum is represented by five
bands. Lowest one is a very narrow and consists of ten very near placed lines.
Index of eigenstate, wave numbers and calculated energy levels in the folding zone
approximation are given in the first three columns of the Table 4.1. As one can see
from the table, some levels are degenerated. The resulting energy levels for first

Fig. 4.3 Energy spectra for
graphene quantum dot
supercell from 51 × 51
primitive cells. Folding zone
approximation (left);
pseudo-potential
approximation, first order
perturbation theory result
(right). Spectra are
normalized on largest value
of the right spectrum

Table 4.1 List of lowest eigenstates of the model graphene quantum dot

No. ki/|KA| E(0)(ki), eV E
(1)
i , eV

1 (0., –0.0522603) 0.682502 0.00044269

2 (0., 0.0522603) 0.787028 0.000762951

3 (–0.020115, –0.0871006) 1.13688 0.000785459

4 (0.020115, –0.0871006) 1.13688 0.00102502

5 (–0.020115, 0.0871006) 1.37428 0.00112078

6 (0.020115, 0.0871006) 1.37428 0.0011403

7 (0., –0.121941) 1.44642 0.00132088

8 (–0.04023, –0.121941) 1.61086 0.00133497

9 (0.04023, –0.121941) 1.61086 0.0014769

10 (–0.020115, –0.156781) 1.80494 0.00149691

11 (0.020115, –0.156781) 1.80494 4.10456
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Fig. 4.4 Amplitude squares |χ |2 of strongly localized wave functions for different energy GQD-
levels; energy values E are in insets to figures

order perturbation theory applied (again in sorted order) are shown in the fourth
column of the Table 4.1. They already do not correspond to states with definite
wave numbers ki and are non-degenerated. Eigenfunctions for several lowest levels
are shown in separate figures. As one can see electrons are localized on holes of n–
p–n graphene junction. Figure 4.4 shows that every electron is confined by its hole
but is not annihilated with it. Levels in Hartree–Fock approximations are ionization
levels of the graphene QD.

The pseudopotential removes the degeneracy of the energy levels for the GQD-
supercell and localizes the valent electrons of the GQD-model on the holes of the
n–p–n graphene junction. Non-spherical symmetry of GQD wave functions in a
magnetic field leads to lifting of spin and valley degeneration. Therefore, a tunneling
current differential of the electrons pulled out from the holes by different electrical
tip-induced fields yield more than 10 quadruplets of charging peaks for superlattice
“graphene on boron nitride” in STM-experiments [9] Data in Table 4.1 and Fig. 4.3
with sign “–” are ten top hole levels of our n–p–n-junction model. These predicted
by our model levels are very near in energy and are in the range from 0.00044269
to 0.00149691 eV. Their splitting in magnetic fields would explain the Coulomb
staircase in the STM-experiments [9].

According to simulation results presented in Fig. 4.5a, b, there are weak localized
energy levels, for example, with energies 0.00044269 and 0.00102502 eV, where
electrons in GQD persist to be almost free. Thus, Klein paradox is absent in our
model. Moreover, these weak localized states are wide ones that fit experimental
data in Fig. 4.5c much better than theoretical curves in [8]. The weak localization
explains the “tail” in distribution of hole density outside the quantum dot (see
Fig. 4.5c). Besides, the presence of numerically revealed strongly localized GQD-
states in Fig. 4.4 explains atomic-like distribution of electron density observed in
STM-experiments [1, 8].
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Fig. 4.5 Weak localized wave functions: amplitude square |Ψ |2 for an energy GQD-level
0.00044269 (a) and 0.00102502 eV (b); (c) atom-like graphene QD with Gaussian potential: theory
(up) and experiment (down) [8]

4.6 Conclusion

To summarize, the quasi-relativistic models of graphene n-p-n (p-n-p) junctions
have been proposed. A supercell pseudopotential which electrically confines elec-
trons (holes) in graphene quantum dot has been found. This potential has a finite
depth.
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