ResearchGate

See discussions, stats, and author profiles for this publication at:

Composite materials with radioactive
inclusions as artificial radioabsorbing covering

Article /1 Reviews on advanced materials science - June 2006

CITATIONS READS
3 9

4 authors, including:

e National Academy of Sciences of Ukraine

88 PUBLICATIONS 233 CITATIONS

SEE PROFILE
All content following this page was uploaded by on 15 November 2014,
The user has requested enhancement of the downloaded file. All in-text references are added to the original document

and are linked to publications on ResearchGate, letting you access and read them immediately.


https://www.researchgate.net/publication/267992217_Composite_materials_with_radioactive_inclusions_as_artificial_radioabsorbing_covering?enrichId=rgreq-f2a75f50ee464104efabc0a92a53487b-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzk5MjIxNztBUzoxNjM4NDEwNjk1NTk4MDhAMTQxNjA3NDE2Mzc1Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/267992217_Composite_materials_with_radioactive_inclusions_as_artificial_radioabsorbing_covering?enrichId=rgreq-f2a75f50ee464104efabc0a92a53487b-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzk5MjIxNztBUzoxNjM4NDEwNjk1NTk4MDhAMTQxNjA3NDE2Mzc1Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f2a75f50ee464104efabc0a92a53487b-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzk5MjIxNztBUzoxNjM4NDEwNjk1NTk4MDhAMTQxNjA3NDE2Mzc1Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergei_Kruchinin3?enrichId=rgreq-f2a75f50ee464104efabc0a92a53487b-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzk5MjIxNztBUzoxNjM4NDEwNjk1NTk4MDhAMTQxNjA3NDE2Mzc1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergei_Kruchinin3?enrichId=rgreq-f2a75f50ee464104efabc0a92a53487b-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzk5MjIxNztBUzoxNjM4NDEwNjk1NTk4MDhAMTQxNjA3NDE2Mzc1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Academy_of_Sciences_of_Ukraine?enrichId=rgreq-f2a75f50ee464104efabc0a92a53487b-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzk5MjIxNztBUzoxNjM4NDEwNjk1NTk4MDhAMTQxNjA3NDE2Mzc1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergei_Kruchinin3?enrichId=rgreq-f2a75f50ee464104efabc0a92a53487b-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzk5MjIxNztBUzoxNjM4NDEwNjk1NTk4MDhAMTQxNjA3NDE2Mzc1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergei_Kruchinin3?enrichId=rgreq-f2a75f50ee464104efabc0a92a53487b-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzk5MjIxNztBUzoxNjM4NDEwNjk1NTk4MDhAMTQxNjA3NDE2Mzc1Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Rev.Adv.Mater.Sci. 12 (2006) 127-132

COMPOSITE MATERIALS WITH RADIOACTIVE
INCLUSIONS AS ARTIFICIAL RADIOABSORBING
COVERING

V. Klepikov', S.Kruchinin?, V. Novikov' and A.Sotnikov3

"Institute for Electrophysics & Radiation Technology NASU, Kharkiv 61002, Ukraine
2Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
3Kharkiv Military University, Kharkiv, Ukraine

Received: November 12, 2005, revised version February 8, 2006

Abstract. New form of composite materials as semiconductor dielectric layer with radioisotope
inclusions is presented in this paper. The presence of additional generators of ionization in
semiconducting material (due to a-particles irradiated by radioisotope inclusions) causes the
essentially nonequilibrium characteristics of composite materials: increase of absorption factor,
changes of real component of permittivity, and nonlinearity phenomenon of conductivity. The
generalized kinetic equation is proposed to describe nonequilibrium stationary states of the
electronic subsystem of radioisotope composite covering. It is shown that nonequilibrium states
of electrons in the covering are solutions of this equation and have the power asymptotic forms.

1. INTRODUCTION

Recently the composite materials are widely
adopted in many areas of physics and technology
(for example as protective covering). Such materi-
als can be considered as materials with complex
(fractal) structure. The distinguishing characteris-
tic of fractal media implies that the macroscopic
properties of materials (coefficients of thermal con-
ductivity, electro-conductivity, diffusion, etc.) and
dielectric properties depend on their fractal charac-
teristics (for example, fractal dimensions of a ma-
terial or its porosity) [1].

Characteristic features and phenomena in such
simulated fractal media, which can be used to op-
erate their electrodynamical properties are:

- irreversibility and their general property of ‘forget-
fulness’ (or ‘loss of information’ [1]);

- nonequilibrium medium, creation of states with
power distribution functions and power falling of
correlations [2]; changing dispersion of medium
in these states [3];

- nonlinearity of medium caused by its fractality [4];

- peculiar properties of material due to specific dis-
persion characteristics of inclusions;

- capability to control stochastic resonance char-
acteristics in simulated fractal media.

The interest to study the use of composite ma-
terials in electronics is caused by possibility to con-
trol effectively electrodynamical properties of such
materials.
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From our point of view, the fractal radioisotope
composite materials, i.e. dielectric materials with
fractal inclusions consisting of alpha-radioactive el-
ements, can be used more effectively in future.

The use of alpha-radioactive inclusions gives a
possibility to use the nonequilibrium of electrical
systems of materials as complementary control fac-
tor, i.e. itis possible to control not only the inhomo-
geneity of material in coordinate space, but the in-
homogeneity of electrical subsystem in phase
space.

Radioisotope inclusions cause the complemen-
tary ionization by o-particles in a material. For a
radioisotope covering with intensity of a radioactive
material , (Ku/cm?) with energy E (MeV) of o-par-
ticles in volume of a material with excitation energy
I (eV) there occurs an electron sources with inten-
sity Q = 3.7 10" xE / IR,, where R, (cm) is a path
length of a-particles in material [5,6].

The presence of steady sources of ionization and
sinks of particles in system through the recombina-
tion of surplus charge and emission current from a
composite material gives rise to the quasistationary
states for electrons [2,3]. Distribution functions of
particles on energy in such states posses the power
asymptotics and correspond to quasistationary flows
in phase space. Kinetics of electrons in plasma of
solids and creation of stationary nonequilibrium dis-
tributions of electrons due to this ionization provide
a theoretical basis to describe the radioisotope cov-
erings; this fact has been first confirmed experimen-
tally in [5,6].

Nonequilibrium states are characterized by
nonextensivity and their entropy can be represented
in Tsalis form with nonextensivity coefficient q [7].
We have developed the generalized kinetic equa-
tion without sources and sinks with Jackson deriva-
tives which order depends on flow of particles [8].
The stationary solutions of this equation agree with
nonequilibrium stationary states of radioisotope
composite material.

2. METHODOLOGY

It has been first shown in [2,3] that power distribu-
tion functions are the exact stationary solution of
equation for integrals of collision between Boltzman-
and Fermi-particles. It is convenient to present the
kinetic equation for isotropic distribution function as
continuity equation for distribution function on en-
ergy in the form
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Fig. 1. The dependence of the generalized flow in
phase space from energy and parameter q.
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where T1{f,€} is a flow in the phase space and ¥(g)
are sources and sinks.

The differential form of the kinetic equation for
photons interacting with electrons has been obtained
first in paper [9] and the power-series solution of
this equation —in [10]. For electrons interacting with
phonons, the general kinetic equation in differential
form looks like Eq. (1) with flow of particles

[T{re}= SQ(S)V(S)[EZ”—"Z} (2)

where v(e)=v,(¢/T )%, and values v,, q are determined
by mode of interaction between electrons and
phonons. Stationary nonequilibrium solutions cor-
respond to the constant nonzero flow of particles
(or energy) in the phase space (see [2,3]). The en-
ergy distribution evolution is accompanied by en-
ergy flow evolution in the phase space. Usually, the
connection between distribution function and flow
in the pulse space is determined at the same mo-
ment of time (locally versus time). At large source
intensities, it is necessary to take into account the
specific time of relaxation of particles flow t and to
note the kinetic equation, which represents the dif-
fusion equation for distribution function in the en-
ergy space, as generalized equation of hyperbolic
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In the case of the energy sources in the sys-
tem, Egs. (2) and (3) has a stationary non-equilib-
rium solution in the exponential asymptotical form
[2,3]. To clarify the influence of radioisotope sources
on degree of irregularity of electrons states in sol-
ids we give results of numerical solution of system
(2),(3) for kinetic equation with localized sources
and sinks (see Fig. 1).

The quasi-stationary distributions with the ex-
ponential ‘tails’ are of general character and asso-
ciated with the generalization on thermodynamics
to non-ideal systems.

C. Tsallis [7] has considered the thermodynam-
ics of such systems in which the entropy has not
the property of extensiveness. The formalism of
Tsallis consists in replacement of the exponential
and logarithmic functions in the relations of statis-
tics and thermodynamics by their generalized power

1-q
In(x) = In_(x) = I,
1-q

exp(x) — exp, (x) = (1 + (1 _ q)x)u(pq)

(4)

with a parameter q. Note that at g — 1, Inq(x) and
equ(x) turn into the common logarithm and expo-
nent and are inter-convertible ones. The new for-
mula for the entropy with use of (4) has the follow-

ing form:

1-20p;
Sq :_zpfllnq(PI):ﬁ- ()

The essential property of the entropy introduced
in such a way is its nonextensiveness. In fact, as it
follows from (4), the function Inq(x) satisfies relation-
ship:

In_(xy) =In_(x)+In_(y)+(1-q)In_(x)In_(y). (6)

Using this property, we can split out the full sys-
tem into two independent subsystems A and B, then

S,(A+B) =S (A)+S,(B)+

(1-9)s,(4)S, (B) (7)

Evidently, the parameter g here is a measure of
nonextensiveness of system. The functional form of
g-entropy, which proposed by Tsallis, is quite arbi-
trary and the value q is not determined. Neverthe-
less, the g-entropy maximum leads to the expo-
nential-like functions:

p(e) = exp,(-(e/T)). (8)

Let’'s compute the flow in the velocity space for
the exponential-like function (8). The stationary
states correspond to the regions in which the flow
does not depend on velocity. Note that the formal
generalization of the Maxwell-Gibbs equilibrium dis-
tribution function, using the function (4), to non-equi-
librium states in the case of the quantum statistics
becomes ambiguous one. Really, the Fermi equi-
librium function can be represented as two equiva-
lent forms:

ex e-E,
U ot (9)
ex e~k + exp E_E’).
P 2T 2T
Substituting the exponent symbol in these rep-
resentations for the function (9), we obtain two non-
equivalent generalizations to non-equilibrium states
for the Fermi function. These both functions at

g — 1 are transformed into the Fermi distribution
function. The distribution function

e-E,
“Pa" or
f —

a(e) = e-E, e-E) (10)
equ( - )+equ(— o7 )

deviating from equilibrium, undergoes changes con-
centrated in the vicinity of the Fermi energy, whereas
the second function

1
f,(e)=
q 1+equ(E‘TEf) (1)

with increasing non-equilibrium, has the exponen-
tial asymptotical form at larger energies. Joining the
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obtained asymptotics we obtain the correct solu-
tion at all energies:

f(e.E,.T)= 0(E, —¢)+

-

_Ej
T —_
e-E, o
exp,| - T +1

The coefficient g in above expression depends
on intensity of source of particle in the system.

1+ equ(

(12)

3. GENERALIZED KINETIC EQUATION

Now we will demonstrate that the Fermi generaliza-
tion of distribution function above-stated can be (at
least roughly) represented as a generalized equa-
tion solution for the flow in the phase space. For
this purpose, we use of the Jackson derivative. The
Jackson derivative for the arbitrary f(x) is written in
the following form:

@)~ x)

D,f(x) =
gx — X

(13)
When the parameter g tends to 1 (g — 1), the
Jackson derivative is transformed to the normal de-

q-1

rivative D f(x)=df(x)/dx. As it is known, the
collision integral / can be written in the divergent
form in terms of the flow in the phase space that in
its ultimate case has the following form:

1 0
v = —@in{fﬁ}sn({f}ﬁj):
v(s)[TzZ +H(e)(1- f(s))j. "

Let’s substitute the normal derivative in the flow
equation for the Jackson derivative with the param-
eter g and introduce the generalized flow IT ({f}., T)
using the generalized relation:

I1,{f}eT) =D, f(e) + f(e)(1+ f(e)).

By substituting the distribution function (12) in
the flow equation (15), we obtain the flow as a func-
tion of the variables ¢, g which is presented in Fig.
2.

(15)
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Fig. 2. Dependence of generalized flow I1 ({f}.¢, T)
in the phase space on energy and nonextensivness
parameter q.

As can be seen from the figure, there are re-
gions of parameters where the dependence of flow
on energy is small. It is confirmed by the calcula-
tion of generalization of collision integral

I =D, (Hq({f},s,T))q

with respect of Jackson derivative of g order from
the generalized flow. The expression obtained for
the analogous parameters as in Fig. 2 occurs to be
equal to zero with an accuracy of 10°. Thus, the
quasistationary distribution function (12) precisely
satisfies the generalized kinetic equation for sta-
tionary:

I.({f}.eT)=0.

As usual, the Fermi energy values in the distri-
bution function (12) are determined by the particle

density n(E,T,q) = J.g(s)fq(s,E,T)ds, where

(16)

(17)

g(e)is the density of eleoctron states in solids. Our
description of generalized flow in the phase space
permits to inter-relate the non-extensiveness para-
metric value g and the flow value. This dependence
in the temperature region 7<0.3E, can be just de-
scribed by the simple analytical relation

Hq =02 Inq:1.s77 (q)

Hence, the stationary nonequilibrium solutions
of kinetic equations with sources and sinks, that

(18)
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correspond to the constant flows in the phase space,
can presented as solutions of certain generalized
kinetic equations without sources and sinks. The
integral characteristics of sources issue from the
value of nonextenssivness parameter q.

4. DISPERSIVE PROPERTIES OF A
COVERING.

Large deformations of distribution function of elec-
trons in a material of covering lead to essential
changes of material permittivity, which describes the
material behavior in the external magnetic field. It
follows from the determination of permittivity:

E/(OJ,E)=1+6£/,

. 4me’ .+ . 1 _of

U P (19)
k w-kv ov

By integration (19) on angles and taking into ac-
count that 1/(x+i0)=p/x-ind(x) we obtain the simple
estimation:

16m’e’ viF(v)
Rede = — . dv—; .
0 2

3 _2 2 3 (20)
8n"'me (W 0
Imde = -() f()
0 k k

From Eq. (20) one can see that the increase of
distribution function in the region of Fermi energies
lead to the drastic wave decreasing. The radius of
Debye r, essential to study the electromagnetic
properties of plasmas, is related to the distribution
function by the equation:

4me’ I(E of ) av|
m ov ) kv
Hence, for r, in the nonequilibrium states of elec-

trons in solids with distribution function (12), it fol-
lows:

1
2

r, = (21)

q

4nmv3( T a1
)+ T

K =r?=
’ 3T kEI(q_1

dq

m(q - 1)v* (22)

3.9 5
*27g-1"2"2E,(q-1)-2T

Fig. 3. Coefficient of electromagnetic wave absorp-
tion in nonequilibrium composite covering subject
to the wave vector of incident wave and its frequency.

The coefficient of wave absorption calculated for the
stationary distribution function (12) subject to the
wave vector of incident wave and its frequency is
presented in Fig. 3.

The decreasing of waves over the wide range of
parameters of damping wave becomes, as shown
in Fig. 3, to be very extensive and full energy of
wave can be absorbed by relative layer of covering.

5. CONCLUSIONS

The proposed method can permit to construct the
effective thermodynamical model for physical sys-
tems with sources and sinks which does not de-
pend on the specific interaction potential in a sys-
tem. We hope that the macroscopical characteris-
tics of stationary nonequilibrium states posses the
universality properties and the study of generalized
kinetic equations for systems with sources and
sinks are of fundamental importance to interpret the
nonequilibrium statistical thermodynamics in open
systems which are far away from the local equilib-
rium.
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