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The continuum states of the light nuclei ®°He, "Li, "Li, and "Be are investigated in a
microscopic approach that takes account of the dynamics of the cluster and quadrupole
collective degrees of freedom. It is shown that the interaction of these nuclei with
electromagnetic radiation leads to the excitation of collective resonances with energies £
higher than 20 MeV and widths I" smaller than 1 MeV and giant quadrupole resonances with

E in the range from 12 to 15 MeV and '~ 5 MeV,

1. INTRODUCTION

The dipole. monopole, and quadrupole giant reson-
ances occupy a special place among the resonance states of
nuclei excited by electromagnetic radiation or charged parti-
cles. Interest in them was aroused by Migdal’s prediction' of
the existence of the giant dipole resonance, which stems
from the collective oscillations of the protons, and the subse-
quent experimental discovery” of various manifestations of
this resonance. Since then a large number of experimental
and theoretical papers have been published in which the
properties of the dipole, monopole, and quadrupole reson-
ances are discussed.

The main problem of the theory of the giant resonances
is to explain their nature and find out the principal factors
determining their positions and widths. To what extent have
the published theoretical models for the giant resonances
been able to cope with this problem?

Two different approaches, which we shall conditionally
call below single-particle and collective approaches, are used
in the investigation of the giant multipole resonances. In the
single-particle approach, which is possible in the random
phase approximation {RPA) or in the Tamm-Dancoff ap-
proximation, the collective excitation of a given multipole
order is a coherent superposition of a definite number of
particle-like and hole-like excitations. The coefficients of
this superposition are determined by the interaction in the
particle—hole channel. We judge the degree of collectiviza-
tion of the excitations in this approach from the electromag-
netic-transition probabilities relating a given state to the
ground state: the higher the transition probability is, the
more strongly the level 1s collectivized. The position of a
giant resonance in the single-particle approach is deter-
mined by the transition-probability spread over an energy
range. The question of which modes of the collective motion
form the giant resonance states remain open in this case.
With the aid of an averaging procedure (see, for example,
Ref. 3), we are able to reproduce fairly well the (y,n)- and
(y.p)-photodisintegration cross sections. For a more accu-
rate determination of the position and width of a giant reso-
nance, use has been made in the last few years of the contin-
uum states, which allow us to compute the width due to the
emission of a nucleon from the nucleus. But this width turns
out to be much smaller than the experimental width. To
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eliminate this discrepancy in the single-particle approach,
account is taken of the excitations of the 2p—2#k type, etc.
The role of these states and other problems connected with
the determination of the width of a giant resonance are dealt
with in detail in Refs. 3-6.

In the collective approach we use a translationally in-
variant basis of many-particle functions that reproduce cer-
tain nucleonic correlations. This approach, in contrast to the
single-particle approach, involves the use of those modes of
the collective nucleon motion (the monopole, dipole, qua-
drupole, etc., modes) which form the giant resonance, and
are excited as a result of the interaction of photons and
charged particles with a nucleus. As is well known, the RPA
is valid for systems executing small-amplitude collective os-
cillations. However, there are no such limitations in the var-
iuos variants of the collective approach (which are discussed
below).

The microscopic theory of the collective excitations of
nucleon systems,’ ! based on the idea that the collective
modes of the motions play the dominant role in the forma-
tion of the giant resonances, correctly predicts the positions
of these resonances, as well as the relatively large photodis-
integration cross sections, but turns out to be incapable of
reproducing the observed resonance widths.

All the known giant resonances lie in the continuous
region of the spectrum of nucleon systems, high above the
threshold for the disintegration of these systems via the var-
ious channels. Therefore, in order to compute the giant-reso-
nance widths on the basis of the microscopic theory of col-
lective excitations, we must include in the analysis, along
with the collective modes, the modes connected with the de-
cay of the nucleon system via the open channels. Thus far
this step has not been taken, which clarifies the difficulty of
the microscopic theory of collective excitations in account-
ing for the observed giant-resonance widths.

The main purpose of our paper was to carry out a con-
sistent analysis of the collective degrees of freedom of a nu-
cleus and the degrees of freedom of those channels via which
the disintegration of the nucleus can occur. We limited our-
selves to the consideration of p-shell nuclei and quadrupole
resonances so as to keep the actual calculations sufficiently
simple. As aresult, we were able to compute for “He, °L1i, and
“Li the effective photodisintegration cross sections in the
various partial states, as well as the corresponding cross sec-
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tions for radiative capture, and demonstrate that the large
width of the giant quadrupole resonance of these nuclei is a
direct consequence of the strong coupling between the col-
lective degrees of freedom and the cluster degrees of freedom
of the open disintegration channels for the nuclei in ques-
tion. Finally, the approach developed by us leads to the con-
clusion that there exist narrow quadrupole resonances with
energies of several tens of MeV. At such high energies of
excitation of the collective degrees of freedom the coupling
between these degrees of freedom and the cluster degrees of
freedom is weak, and therefore the decay of the collective
excitations via the open cluster channels is suppressed.

In Sec. 2 we indicate the principal steps in the develop-
ment of the microscopic theory of collective excitations of
nuclei. Then in Sec. 3 we present a new method of investigat-
ing the continuum states of a nucleon system. This method
takes account of the interaction between the collective and
cluster degrees of freedom of a nucleus, and allows us to
solve the giant-resonance-width problem. In Sec. 4 we pres-
ent and discuss the results obtained in numerical computa-
tions, and compare the theoretical results obtained by us
with the known experimental data.

2.0N THE NATURE OF THE GIANT-RESONANCE WIDTHS

The presently well known work by Griffin and
Wheeler® became the first stage in the development of a mi-
croscopic theory of collective excitations of nuclei. Griffin
and Wheeler uncovered a wealth of resources available to the
generator-coordinate method for the solution of the prob-
lems of the microscopic theory. As an example, they com-
pute the position of the giant monopole resonance of the '°Q
nucleus. We must, in investigating the quadrupole~-mode ex-
citations, supplement the generator-coordinate method by
the procedure for projecting'' a wave packet onto a state
with a definite angular-momentum value. This has been
done successfully by Abgrall, Caurier, and Bourotte-Bilwes.
In the papers cited in Ref. 9 they compute the excitation
energies of the various quadrupole modes of the magic nuclei
*He, %0, and *’Ca and of the *°Ne nucleus.

A new independent line of development of the micro-
scopic theory of collective excitations of nuclei was con-
ceived, beginning with Simonov's work.'” In place of the
Hill-Wheeler equation® for the collective medes, dynamical
equations in ordinary coordinate space were derived first for
the monopole mode'! and then for the quadrupole
modes,”'*'* and it became clear that the interaction of the
collective modes with the internal-motion modes of a nu-
cleon system can be taken into account, using a basis of gen-
eralized hyperspherical functions.” The total number of qua-
drupole degrees of freedom responsible for the giant
quadrupole resonance is, according to the microscopic the-
ory, equal in the general case to nine,” and not five, as follows
from the Bohr-Mottelson phenomenological model.

Moshinsky and Quesne’s work'” on the symplectic
groups facilitated the bringing together of the two orginally
independent lines of development of the microscopic theory.
AsSmirnov er al.'* have shown, this work by Moshinsky and
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Quesne contains a natural—from the standpoint of the
method of generalized hyperspherical functions’—classifi-
cation of the basis states of teh multidimensional harmonic
oscillator that form the quadrupole and monopole excita-
tions of nuclei. Later on, Rosensteel and Rowe'” proposed a
symplectic model of the nucleus, and an Sp(2,R ) symplectic
model was realized for the first time for the light even-even
nuclei in a series of papers by Arickx et @/.'""'* Then Smir-
nov, Okhrimenko, and three of the present authors (G. F.
F.,V.S. V., and L. L. C.), by expanding the nuclear wave
function in a generalized Fourier series in terms of the com-
plete oscillator basis of the Sp(6,R) or Sp(2,R ) model, were
able to reduce the dynamical equations of the microscopic
theory of collective excitations to a system of algebraic equa-
tions.'®?! In the process it was found that the matrix ele-
ments of the various operators used in the computation of
the collective -excitation spectra of nuclei within the frame-
work of the generator-coordinate method are the generating
invariants of the matrix elements of the same operators, but
in the basis functions of the symplectic model. This complet-
ed the unification of the various approaches—the generator-
coordinate method, the method of generalized hyperspheri-
cal functions, and the algebraic methods assumed as the
bases of the symplectic models—which had for a long time
been developed independently.

Finally, it was recently found that the many-particle
oscillator basis can equally well be used to investigate both
the stationary and the continuum states of nucleon sys-
tems,”*?* This enables us to expand the standard basis for
the symplectic models, and include in it basis functions cor-
responding to the modes of the motions in the various types
of cluster channels for nuclei.”* In essence, this step should
be regarded as the use of the ideas of the resonating group
method for a more complete investigation of the properties
of collective excitations and the solution at a new level of the
giant-resonance width problem on the basis of the micro-
scopic theory of collective excitations.

It is evident that only the excitations of the closed-chan-
nel modes, excitations which are, moreover, weakly coupled
to the open-channel modes, can be narrow resonances. At
relatively high energies only those channels in which the
excitation energy gets to be uniformly distributed among all
the nucleons, i.e., the channels of the collective degrees of
freedom, are closed channels. But if the amplitude of the
collective oscillations is not too large, the resonances of these
channels can also be quite broad (as obtains in the case of the
giant resonances), since under conditions of small-ampli-
tude collective oscillations the collective-mode channels and
the open nuclear-disintegration channels strongly overlap.

The elucidation of the nature of the giant-resonance
widths on the basis of the microscopic theory of collective
excitations amounts to the following. As a result of the inter-
action of the nuclei with the electromagnetic radiation or the
charged particles (electrons, protons, etc.), the energy of the
7 tays or charged particles is directly transferred to the col-
lective (dipole, quadrupole, or monopole) degrees of free-
dom, resulting in the excitation of collective oscillations.
The energy necessary for the excitation of specific collective
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oscillations can be estimated if the transfer of excitation en-
ergy from the collective oscillations to all the other modes of
the nucleon system is ignored within the framework of the
microscopic theory. This procedure, which has been repea-
tedly used for the monopole and quadrupole
modes, > 118192125 ojyeg the correct positions of the mono-
pole and quadrupole resonances, but ignores the problem of
their width. The dissipation of the giant resonances is a con-
sequence of the fact that the nucleus, having absorbed the
energy transferred to it, goes over into a state lying high
above the threshold for its disintegration via the various
channels. The collective-mode channel is closed. Therefore,
so long as the excitation energy remains localized on the
collective degrees of freedom, the nucleus does not disinte-
grate. But this cannot last for long. The collective-degrees-
of-freedom channel is coupled to other channels that are
open at that excitation energy which has been absorbed by
the collective channel. Moreover, this coupling is strong,
and this ultimately establishes the Jarge width of the giant
resonances: the excitation energy of the nucleus is quickly
transferred from the collective modes to the open-channel
modes, and the nucleus immediately disintegrates.

This is roughly the interpretation of the giant reson-
ances and their widths. It is corroborated by calculations
carried out for the light nuclei. The principal, experimental-
ly verifiable result of the microscopic theory is the conclu-
sion that the giant resonance is a single state having a large
widht. There may (it is not obligatory) occur in the general
background of this state the peaks of a small number of nar-
row resonances, which then account for a certain portion of
the sum rule. The possible origin of the narrow resonances
has already been indicated above.

3. METHOD OF COMPUTING THE CONTINUUM WAVE
FUNCTIONS

We shall consider only one cluster channel along with
the collective isoscalar quadrupole excitations (the so-called
longitudinal collective oscillations, i.e., the oscillations
along the direction made distinct by the vortex mode?!). The
simultaneous consideration of a large number of cluster
channels is, in principle, possible, but it is expedient at the
first stage to limit ourselves to the simplest situation so as to
fully identify the effects stemming from the transfer of the
excitation energy from the collective to the open-channel
modes. The qualitative role of the neglected cluster channels
is apparent. They are capable only of speeding up the dissipa-
tion of the excitation energy, which is initially concentrated
only on the collective degrees of freedom. As to the collective
isovector excitations, which are also ignored by us, they can
form another giant resonance, the determination of whose
position and width within the framework of the microscopic
theory of collective excitations requires special calculations.

The results discussed below are, naturally, sensitive to
some extent to the nucleon—nucleon potential chosen by us;,
since the microscopic theory essentially establishes the de-
pendence of the position and width of the giant resonances
on the parameters of the nucleon—nucleon potential. At the
same time, it is well known that all the semirealistic nu-
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cleon—nucleon potentials used at present in the microscopic
theory of light nuclei lead to at least qualitatively identical
results. This gives us reason to limit ourselves in a first inves-
tigation to the consideration of one nucleon—nucleon inter-
action potential. As this potential, we chose the Brink-
Boceker potential.

Finally, another nonobligatory simplification: In the
computation of the photodisintegration and radiative-cap-
ture cross sections we used the long-wavelength approxima-
tion, which becomes invalid as the energy of the continuum
states involved in the computation increases. We propose to
investigate the degree of distortion introduced by the long-
wave approximation in the course of the analysis of the con-
tinuum—continuum transitions.

Let us, for the purpose of carrying out the planned pro-
gram, represent the nuclear wave function in the form of an
expansion in terms of two sets of many-particle oscillator
functions:

‘I’=Z,Cf,°]]v,col>+‘2 s ncel). (1)

The first set of functions {|v, col) } form the basis of an
irreducible representation of the symplectic group Sp(2,R).
It is suited for the description of the collective quadrupole
excitations of nuclei. If we limit ourselves to only this basis,
we obtain the microscopic Sp(2,R) model first realized by
Arickx et al.'®'® The second set of functions {|n,cl) } forma
basis of oscillator functions for the cluster model, or, in other
words, of the resonating group method (RGM), which re-
produces the fragment (cluster) motion in the considered
channel. The coefficients {C ', C¢'} of expansion of the
wave function W in terms of the basis functions {|v,col),
|n,col} satisfy the system of linear algebraic equations

Z[(v,col |A|vcol) —Eéwv]Cfﬁ"ﬂLZ [<v,col | A} n'cli

n

—E8 o har ] C S =0,

2 [<n,cl || Vicol >—Ebuyhy ]C

+ E[( nel || n'cl >—E8,.1C 5 =0. (2)

Each of the set of functions {|v, col) } and {|n,cl) } used inan

orthonormalized set, i.e.,

{(v,col|v',col)=8., <{nel| n'cl>=0un.

But these sets are not biorthogonal. This means that the
overlap integrals (v,col|n,cl) are nonzero. More precisely,
they are not equal to zero when the functions |v,col) and
|n,cl) belong to the same oscillator shell:

(v,col| n,cl >=A.8,n. (3)

The values of A, determine the coupling of one basis to the
other, or, in other words, the coupling of the collective mode
to the cluster mode. As the calculations show, the overlap
integral A,=(0,col|0,¢]) is equal to unity (i.e., the first func-
tions of the two bases coincide), but as # increases, 4, de-
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creases monotonically, tending to zeroasn — “‘ ~ 2?2 From
this it follows that the smaller the amplitude of the collective
oscillations is, the more strongly they are coupled to the clus-
ter mode. When the amplitude of the collective motions is
large, the cluster and collective modes are practically inde-
pendent, which preordains the existence of very narrow col-
lective resonances with excitation energy in excess of 20
MeV.

We have previously proposed in a number of pa-
pers'”*2° a generating-function or generalized-coherent—
state (GCS) algorithm that eliminates the main difficulties
connected with the construction of the system of equations
(2) and the computation in the {|v, col} } and {}n, c])} bases
of the matrix elements of the Hamiltonian operator H and
the other operators required for the investigation of the var-
ious processes. In accordance with this algorithm, the GCS
are constructed in the form of Slater determinants composed
of some specially defined single-particle orbitals. In the case
of the lightest p-shell nuclei, for which a single channel-—the
breakup of the nucleus into an a particle and an s-shell nu-
cleus—is taken into account, the GCS should be constructed
from orbitals of the form

1, 2(Rar; R
exp{—7ri~-— f_@ (pr)* + Wr) I_?} (4)

wherer; is the radius vector of the ith particle, R, =R,pis
the cluster parameter indicating the position of the k th fra-
gement (A = 1,2), and Fis the deformation parameter of the
nucleus. The unit vector p specifies the direction of the defor-
mation and, simultaneously, the orientation in space of the
vector R = R, — R,. The GCS constructed from the orbitals
(4) will depend on 34-3 space coordinates (it is assumed
that the motion of the center of mass has been eliminated),
34 spin and isospin variables, and four generator param-
eters: The three components of the vector R and the defor-
mation parameter 3. The expansion of this GCS [which ex-
pansion we shall denote by ®(R,5,p)] in powers of the
generator parameters R and S generates the oscillator-func-

tion basis:
= EZ AT REHY () [ v LMD, (5)

n,v LM

where the 4 /" are the structure constants and fis the mini-
mally admissible—on the basis of the Pauli principle—pow-
erof the generator parameter R (for greater details, see Ref.

27). For p-shell nuclei, f = 4 — 4 for the states of normal
parity [7 = ( — 1)*], while for the states of anomalous par-
ity[7=(— 1)**"'] wehave f= 4 — 3. It follows from the
expansion (5) that, to separate out the oscillator function
|n,v;.LM ), we must differentiate the GCS O(RABpP) 2n+f
times with respect to R and v times with respect to 3, let R

and 3 go to zero, and then integrate over the angle variables

of the unit vector p with weight Y, ,, (p). We can, using this
same procedure, eastly compute the matrix element of some
operator Fin the {|n,v;LM ) and {|n’,v":L "M ") bases if we
know the generating matrix element of this operator, i.e., the
matrix element
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The collective and cluster functions involved in the ex-
pansion (1) form only a small part of the complete function
basis {|n,v;LM ) }. If we fix the parameter v in the functions
In,vy==|n,v;LM ), and set it equal to zero, then the resulting
set of functions will coincide with the cluster basis
[n,cly = |n,0). Similarly, we can obtain the collective func-
tions |v,col) by setting n equal to zero: |v,col) = 10,v).

The general methods of constructing the GCS and com-
puting the matrix elements of the various operators in the
GCS basis, as well as the problems connected with the sepa-
ration of the center-of-mass motion, are considered in detail
in Ref. 26. The specific kinetic- and potential-energy-opera-
tor matrix elements needed for the investigation of the p-
shell nuclei with 5<4 <8 nucleons are given in Ref. 28. The
results of the computation of the collective -excitation spec-
tra of the above-mentioned nuclei in the {|v, col)} basis of
the Sp(2,R) model are presented in Ref. 21, where the ma-
trix elements of the operators H are also given in their explic-
it form. In Ref. 23 the main stages in the computation of the
spectrum and wave functions in the cluster model are con-
sidered in detail. In Ref. 24 allowance is made for the mono-
pole mode, along with the cluster mode. The above-listed
papers contain all the details necessary for the investigation
of the discrete and continuum states of the p-shell nuclei
with allowance for the interaction of both the collective and
cluster modes of the motion.

The inclusion of the collective, along with the cluster,
degrees of freedom allows us to take account of the dynami-
cal polarization of the clusters during their collision. It
should be noted that there are other methods of taking ac-
count of the polarization. Thus, for example, in the papers
cited in Ref. 29 the monopole polarization of one or each of
the colliding clusters is taken into account. But such polar-
ization has little effect on the results obtained, and does not
allow us to identify the resonance states stemming from the
collective motion of the nucleus.

4. COLLECTIVE RESONANCES AND
PHOTODISINTEGRATION CROSS SECTIONS

Before proceeding to discuss the results of the theoreti-
cal calculations, let us note that, for the solution of the sys-
tem (7), we took into account in the expansion (1) 25 func-
tions of the collective basis and 100 functions of the cluster
basis. This number of basis functions atlows us to reproduce
sufficiently correctly the wave functions of the nucleon sys-
tems in both the internal and the outer region. As has already
been stated above, the interaction between the nucleons was
modeled by the first variant of the Brink-Boeker potential.*
The oscillator radius, which has the same value for the clus-
ter and collective bases, was chosen on the basis of the re-
quirement that the threshold for each of the investigated
nuclei be a minimum. In view of the fact that the Coulomb
interaction between the protons was ignored, and since the

Filippov et al. 539
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F1G. 1. Spectrum of the collective excitations and resonance states of the
nucleus “He(“Li). RGM: Calculation in the cluster basis; Sp(2,R): in the
collective basis; RGM + Sp(2,R): calculation taking account of the cou-
pling between the cluster and collective modes of the motion. The level
energies and the resonance widths (numbers in the brackets ) are given in
MeV.

even and odd components of the Brink-Boeker potential are
equal to each other, the threshold energies for the a + 2n
and a +d (as well as a + ¢ and a + *He) reactions and,
consequently, the oscillator radii r, for the ®He and °Li (Li
and 'Be) nuclei are equal. For this very reason, the results
obtained for the nucleus “He (’Li) also pertain to the nucleus
*Li(’Be).

Figure 1 shows the spectrum of the resonances and the
collective excitations of the nucleus *He (°Li), as obtained in
the various approximations. As can be seen, the cluster basis
(i.e., the RGM) allows us to describe the bound states and
the resonance states (the 2* state in this case) stemming
from the existence of the centrifugal barrier. With the aid of
the collective functions {Sp(2,R)] we can obtain, besides
the rotational excitations (the 2™ state for SHe), a set of the
so-called vibrational excitations (L™ = 0% and 2* for *He}),
as well as states of anomalous parity (L7 = 17). The first
0" and 2" vibrational excitations of even-A4 nuclei and the
17 and 3~ vibrational excitations of odd-4 nuclei are usual-
ly identified in the microscopic theory of collective excita-
tions with the monopole and quadrupole giant resonances,
since they are connected with the ground state by large ma-
trix elements of the monopole- and quadrupole-transition
operators, and account for a significant fraction of the mon-
opole and quadrupole energy-weighted sum rules (EWSR).

But if, besides the collective mode, we also take account
of the cluster moder [RGM + Sp(2,R) ], then the above-
mentioned vibrational collective excitations dissolve in the
continuum, and the elastic-scattering phases in the corre-
sponding cluster channel do not exhibit resonance behavior
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FIG. 2. D phase of elastic ad scattering, as computed in the cluster bass
(RGM) (curve. 1) and with allowance for the collective polarization
[RGM + Sp(2,R)] (curve 2).

at those energies at which, according to the calculations car-
ried out with the collective-function basis for a closed cluster
channel, a giant resonance should occur. Consequently, the
giant resonances cannot manifest themselves explicitly in in-
teraction reactions involving light clusters, and we must find
other ways of identifying them. The theoretical result ob-
tained by us for the first 0™ and 2* vibrational excitations is
explained by the fact that the collective-oscillation ampli-
tude in these excited states is relatively small, and therefore
the coupling between the collective and cluster modes is a
strong one. This leads to the immediate decay of the giant
resonance via the cluster channel.

As to the higher 0™ and 2™ vibrational excitations, for
them the collective-oscillation amplitude is typically large.
The strength of the coupling between the collective and clus-
ter modes in these excited states is smaller, and they do not
get washed out upon the inclusion of the cluster basis, but
appear as narrow resonances, manifesting themselves clear-
ly on the energy-dependence curves for the elastic-scattering
phases and the partial effective cross sections in the open
cluster channel. The width of these collective resonances
does not exceed 1 MeV, i.e., it is significantly smaller than
the width of the 27 centrifugal resonance. A similar picture
is observed in the odd-4 nuclei "Li and "Be.

The plot, shown in Fig. 2, of the energy dependence (in
the c.m. system) of the D phase &, of elastic a-particle scat-
tering by the deuteron illustrates the washing out in the con-
tinuum of the 2" quadrupole resonance, which, according to

o, (E2),mb
20 ub-Mev

wi- Ly
J0
20
0

!/\

A i

v 7

£, Mev

FIG. 3. Cross section o, (E2,0*—2") for quadrupole photodisintegra-
tion of the “Li nucleus; £ is the energy of the separating @ and d fragments.
Here and in the other figures the numbers beside the resonance peaks give
the areas of the resonances. The continuous curve was computed in the
RGM + Sp(2,R) basis; the dashed curve, in the RGM basis.
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FIG. 4. Cross section ¢, (E 2, | “—37) for quadrupole photodisintegra-
tion of the "Li nucleus; E is the energy of the a and ¢ fragments.

calculations carried out within the framework of the
Sp(2,R) model, should occur in the 10-20-MeV energy re-
gion. In this region the phase &, decreases monotonically,
and exhibits resonance behavior only at E = 23 MeV, which
corresponds to the excitation of the second 2% collective
resonance.

Let us now consider the energy dependence of the pho-
todisintegration cross sections o, for the nuclei ®*He(°Li)
and "Li("Be). Since the cross sections ¢, for radiative cap-
ture are related to the cross sections o, by the conditions for
detailed balance, our conclusions will equally well hold true
for the cross sections o, . A characteristic of the computed
o, cross sections (Figs. 3-6) is the presence of resonance
peaks on them. Some of them pertain to the narrow collec-
tive resonances excitable by y-rays. The radiative width of
these resonances is equal to their a-decay width. Moreover,
the photodisintegration cross sections have sharp peaks in
the near-thershold region. These peaks occur as a result of
the fact that the continuum wave functions have, when their
energies exceed the threshold energy by small amounts, a
structure similar to the structure of the wave function of the
ground state, which lies not far below the threshold, and the
electromagnetic-transition-operator matrix elements con-
necting the ground state to the above-the-threshold contin-
uum states are really large. In sum, this is what gives rise to
the above-the-threshold resonances. A detailed discussion of
the above-the-threshold monopole resonances can be found
in Ref. 31.

Finally, for °He, °Li, "Li, and "Be we found a quadru-
pole-resonance peak of width ~5 MeV in the 12-15-MeV
excitation-energy region. It accounts for more than 15% of

o(E1), mb 4 mb-MeV
50 T—
x5
40
20
| ! IJL
14 o 23 K2 E M@V

FIG.5. Crosssection o, (E1,0"—17) for the dipole photodisintegration
of the “He nucleus; E is the energy of the @ and 2 fragments.
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FIG. 6. Crosssectionso.(E1,17--2")and o, (E 1,1 —0") for dipole
photodisintegration of the ’Li nucleus; E is the energy of the @ and ¢
fragments. The points correspond to experimental data taken from Ref.
31.

the energy-weighted quadrupole sum rule, and can be inter-
preted as a giant quadrupole resonance, since it is located at
the place where an Sp(2,R) collective model calculation
shows such a resonance should occur.

As a result of the washing out of the collective quadru-
pole excitation in the continuum, it is the quadrupole transi-
tion from the ground state of the nucleus into a continuous
series of states grouped around some center, and not the
transition into a single state, that has a large matrix element.
The peak in the photodisintegration cross section separates
out these states from among the other cortinuum states.

Thus, the photonuclear reactions are the most conven-
ient and natural means of detecting the giant resonances in
the light nuclei.

The experimental situation, as obtains at present, does
not allow a complete verification of the quantitative results
of the theory. Only Ref. 32, which reports the results of mea-
surements of the effective differential cross section for the
reaction

Li(y, o)'H (7)

in the range of y-ray energies from 5 to 50 MeV, has a direct
bearing on the theoretical results obtained by us. The theo-
retical estimates of the effective cross section for the reaction
(7) yield a value that is greater than the measured value by
more than a factor of two. At least two factors could have
contributed to the overestimation of the theoretical cross
section. First, we ignore in the calculations the Coulomb
interaction between the clusters (it suppresses the relative-
motion wave function for the clusters at small intercluster
separations). Second, we ignore the (°Li + n) "Li-disinte-
gration channel, which opens at relatively low energies.
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