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We study a simple model to describe resonant tunneling through an organic molecule between two
conducting leads, taking into account the vibrational modes of the molecule. We solve the model
approximately analytically in the weak coupling limit and give explicit expressions for the thermopower
and Seebeck coefficient. The behavior of these two quantities is studied as function of model parameters
and temperature. For a certain regime of parameters a rather peculiar variation of the thermopower and
Seebeck coefficient is observed.
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1. Introduction

In a recent experiment, Reddy et al. [1] studied transport
through an organic molecule (benzenedithiol (BDT)) attached to
a scanning-tunneling-microscope (STM) tip and a substrate, gen-
erated by a break junction using the STM tip. The authors were
able to measure different transport properties, including the ther-
mopower and respectively Seebeck coefficient of this setup, which
is is shown schematically in Fig. 1. Quite generally, the idea to con-
tact organic molecules to leads in a controlled fashion is rather
fashionable and – if successful – can lead to a variety of interesting
applications, ranging from nanoscale computing to quantum com-
puting [2]. First progress of reproducibly and controlled contacting
organic molecules has been made using carbon nanotubes [3], but
similar attempts with smaller molecules usually suffer from sev-
eral problems, among them the actual question of how the contact
is established and how one can control its quality [4].

It is well known that the physics of nano-objects coupled to
conducting leads is highly nontrivial [5], and already concentrating
on electronic degrees of freedom only presents an extreme chal-
lenge to both experiment and especially theory. The latter is due
to the fact that correlations on these nano-structures can usually
not be ignored and hence one is plagued with complicated quan-
tum impurity problems [6], which can be solved only numerically
and only in equilibrium and for rather restricted model setups. The
situation becomes even worse if one wants to take into account
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Fig. 1. Schematic experimental setup according to [1]. The STM tip is connected to
a reservoir which maintains a constant tip temperature. The substrate, on the other
hand, can be heated, thus creating a temperature gradient across the molecule.

vibrational modes present in complex molecules. Here, even ad-
vanced numerical tools rather quickly meet their limits [8].

And last, but by no means least, the conventional experimen-
tal probe used to study nano-systems is transport. To this end one
usually applies a bias voltage or, as in the above-mentioned ex-
periment, a temperature gradient across the nano-object. In this
situation, the assumption of thermal equilibrium is quickly ques-
tionable, and reliable tools to study correlated systems out of ther-
mal equilibrium – even only the stationary state – are not yet
existing.

Therefore, setting up simple models, which preferably are solv-
able analytically and which allow to study the physical properties
also off equilibrium in the stationary state, is still a highly rele-
vant approach to obtain at least a qualitative feeling how various
degrees of freedom influence the transport properties of nano-
objects.

The situation in an experimental setup like the one shown in
Fig. 1 has the advantage that one can, for example, by stretching
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Fig. 2. Schematic setup of the model. We consider only one relevant orbital of the
BDT molecule, which we assume to be the HOMO. The coupling between the sub-
strate respectively the STM tip are modeled as tunneling barriers.

the bond through removing the tip, control the coupling between
the leads and the molecule very sensitively and actually shift the
system into the weak coupling regime. Here, theoretical calcu-
lations become much easier. For our purpose, we will therefore
assume that the system is in this regime, and suggest to employ
a very simple model which will allow us to see how the interplay
between electronic and vibrational degrees of freedom influence
transport properties.

The model setup and general expressions for thermopower and
possible situations will be presented in the next section. The cen-
tral result, viz. analytical expressions for the thermopower and
Seebeck coefficient will be derived in Section 3, and a summary
will conclude the paper.

2. Setup and model

We study an organic molecule attached to two metallic leads.
The leads are assumed to be in thermal equilibrium, but can have
different temperatures and chemical potentials. We will take the
temperature and chemical potential of the right leads as reference
and write T R = T , T L = T +�T respectively μR = μ, μL = μ+�μ.
In the following, we use μ = 0 as reference of energy.

Using first-principle approaches, such a setup has been stud-
ied before in a quite general way [9], concentrating however on
the local properties of the molecule. Here, we intend to investi-
gate transport properties, and how local vibration modes influence
them. Calculating transport for a general situation becomes rather
quickly a cumbersome task. Therefore, in order to be able to gain
some insight into the physics of the problem while at the same
time having as little parameters as possible, we concentrate her on
a very simple model. To this end we assume that the HOMO of the
molecule has a certain energy ε0 below the chemical potential of
the leads, but the LUMO well above it, so that we can neglect it.
Also, all other electronic states of the molecule are assumed to be
well separated, too. The model motivated above is shown schemat-
ically in Fig. 2, where we also explicitly included the various model
parameters.

Up to now the model is the standard setup to describe res-
onant transport through a mesoscopic system like molecules or
quantum dots. Here, however, we also allow for vibrational modes
of the molecule, which we describe in a harmonic approxima-
tion, and which couple to the electronic degrees of freedom via
a Holstein term. Although the calculation can be performed for
several phonon modes, we concentrate here on the case of one

single mode with frequency ω0. This is for example permissible
when one studies low temperature, where only the lowest-lying
modes play a role anyway. Finally, the molecule is coupled to the
leads via tunneling barriers. The resulting model is the well-known
Anderson–Holstein model adapted to describe the experimental
setup from Fig. 1. Its Hamiltonian thus reads

H = HL + HM + HLM (1)

HL =
∑

k,α=L,R

εα,kc†
α,kcα,k (2)

HM = ε0d†d + ω0b†b + λω0d†d
(
b† + b

)
(3)

HLM =
∑

α=L,R

(
tαc†

α,Bd + h.c.
)

(4)

where we use standard second quantized notation. HL – Hamilto-
nian is describes the electrons on the electrode (source), HM de-
notes possible interaction in molecule, b†,b – creation and annihi-
lation of phonon, HLM – describing the tunneling electron through
the barriers, λ denotes the dimensionless coupling between the
electronic and phononic modes, and tα the tunneling matrix ele-
ments to the leads. The operator c(†)

α,B denotes the projection of the
band states to the barrier.

Note that we did not include the spin degrees of freedom of
the electrons in the model (1). Although this is at first glance a
rather crude approximation, we want to employ it nevertheless for
two reasons. First, including the spin makes already the molecular
problem highly nontrivial and would prevent the semi-analytical
solution we will discuss in the section about the results. Second,
we are presently aiming at a more qualitative insight into the in-
fluence of vibrational modes on transport effects. To this end we
believe that the additional complications due to additional elec-
tronic degrees of freedom will surely alter the results quantita-
tively, but possibly not strongly on a qualitative level.

The model (4) has of course been introduced in the context of
electron–phonon coupling and polaron physics long ago and, in the
case of tα = 0, can be solved analytically [12]. It has been studied
extensively with various methods [13–24] in many different con-
text [19–21,25–30] including but not exclusively studying transport
through nano-structures in and out of equilibrium.

The basic relation in studying transport through nano-structures
is the Meir–Wingreen formula [10] to calculate the electric current
as

J = J0

∫
dω

[
f L(ω) − f R(ω)

]
ρM(ω,�μ,�T ) (5)

where ρM(ω,�μ,�T ) denotes the electronic density of states on
the molecule in the presence of a potential difference �V and a
temperature difference �T between the leads, and

fα(ω) = 1

1 + exp(
ω−μα
kB Tα

)

the Fermi functions of the left and right lead, respectively. The
prefactor J0 = 2πe2

h̄ · ΓLΓR
ΓL+ΓR

collects the coupling parameters

(α = L, R) Γα := π Nα(μα)|tα |2, where Nα(ε) denotes the density-
of-states of lead α, and the natural constants.

Calculating the DOS in the presence of the leads for arbitrary
coupling tα , �μ and �T is not possible. However, in the case
tα → 0 (weak coupling) for both α = L and R , one can approx-
imate ρM(ω,�μ,�T ) by the result for the isolated molecule,
which reads

ρM(ω,�μ,�T ) = 2π

eλ

∞∑
l=−∞

λ|l|

|l|! δ
(
ω − ε0 − (l + λ)ω0

)
(6)
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Fig. 3. Schematic representation of the different situations arising from Eq. (7). The left and right boxes denote the left and right leads, with the Fermi functions as full lines.
In the left lead, we included some �μ and �T . In (a) there are several polaronic modes which lie in the Fermi window, while in (b) the temperature is much smaller than
the level splitting, resulting in effectively only two modes within the Fermi window.

and does not depend on �μ and �T explicitly.
This model has been studied in the context of calculation of

thermopower before [19–21], including higher order effects like
co-tunneling through rate equations [19] respectively equations of
motion for the Keldysh Green’s functions [20,21]. This, in principle,
allows for a much more elaborate treatment of the present model.
However, the equations derived in these approaches are rather
complex and cannot be evaluated readily. On the other hand, the
present experiment appears to be situated in the extreme weak-
coupling limit at rather elevated temperatures, and hence these
higher order effects will be of little influence here. Making use of
the resulting simplifications lead to a very simple analytical for-
mula where one can extract several generic features analytically
and is also able to explain the experiment almost quantitatively
with little effort. We therefore believe that our approach, despite
its admittedly very simple theoretical basis, represents a valuable
contribution.

We should note at this point, that in experimental setups like
the one depicted in Fig. 1 one usually has to expect very asym-
metric couplings between the molecule and the leads, which will
in general lead to a dependence of the physical and transport
properties on this asymmetry [31]. However, the results presented
in [1] are actually averages over a huge number of similar se-
tups with varying coupling strengths for both molecule-surface and
molecule-tip. Since the experiments are rather stable and seem to
produce reasonably sharp distributions over a rather large region
of tip-molecule distances we are certain that this particular exper-
iment is rather well described by Γα → 0 for both leads, with little
influence by a left–right asymmetry.

When we insert expression (6) into the Meir–Wingreen for-
mula (5), the expression for the current becomes

J = 2π J0

eλ

∞∑
l=−∞

g|l|

|l|!
[

f L
(
ε0 + (l + λ)ω0

) − f R
(
ε0 + (l + λ)ω0

)]
Since we are interested in the thermopower, the current has to be
zero, i.e. for a given temperature difference �T between left and
right lead we have to adjust �μ such that

∞∑
l=−∞

λ|l|

|l|!
[

f L
(
ε0 + (l + λ)ω0

) − f R
(
ε0 + (l + λ)ω0

)] = 0 (7)

In general, we are interested in low temperatures, i.e. typically we
will have |ε0|, ω0 � kBT . In this case, only a certain range of values
of l ∈ [lmin, lmax], which have the property that ε0 + (l + λ)ω0 =
O(kBT ), will actually be important, because for the other terms
the Fermi functions are either both zero or both one, i.e. cancel in
the difference. This situation is schematically depicted in Fig. 3a.

Let us take this idea to the extreme and assume, that T is low
enough such that only one vibrational mode with index l0 will

contribute, see the schematic representation in Fig. 3b. The neces-
sary conditions for transport in this case are

ε0 + (l0 + λ)ω0 < 0

0 � ε̃0 := ε0 + (l0 + 1 + λ)ω0 < ω0

from which l0 can be determined. Eq. (7) then simplifies to

1

1 + exp(
ε̃0−ω0−�μ
kB(T +�T )

)
− 1

1 + exp(
ε̃0−ω0

kB T )

+ λ

l0 + 1

[
1

1 + exp(
ε̃0−�μ

kB(T +�T )
)

− 1

1 + exp(
ε̃0

kB T )

]
= 0 (8)

This equation can be easily solved for �μ for given model parame-
ters and �T . Although this is strictly speaking not the case for the
experimental setup in Fig. 1, we want to note that in nano-devices
ε0 can often be controlled through a gate voltage, ε0 = −eV G , and
consequently the active polaronic mode respectively l0 is control-
lable experimentally.

3. Results

Without vibrational modes, the thermoelectric response of the
model (1) has been studied before by Ermakov et al. [11]. Within
their model, the authors observed a linear relation between the
temperature difference and thermovoltage. In the following we
want to try to understand what modifications arise through the
presence of polaronic modes in the molecule.

In the present paper we want to concentrate on the situation
shown in Fig. 3b. Here we can use the fact that ω0 � kBT and
try to solve equation (8) approximately analytically and provide
explicit expressions for �μ and the Seebeck coefficient as function
of model parameters and temperature.

The limiting cases ε̃0 → 0 and ε̃0 → ω0 turn out to be unin-
teresting, because in the first case the combination f L(ε̃0 − ω0) −
f R(ε̃0 − ω0) vanishes, while in the second f L(ε̃0) − f R(ε̃0) → 0. In
both cases one thus recovers the solution by Ermakov et al. [11] in
the limit when the level position is close to the chemical potential.

The more interesting case therefore is ε̃0 finite and reasonably
far away from the chemical potential. Then we can furthermore as-
sume ε̃0 � kBT as well as |ε̃0 − ω0| � kBT , and replace the Fermi
functions by f (x) ≈ e−βx , if x > 0, respectively f (x) ≈ 1 − eβx ,
if x < 0. Inserting these approximations into Eq. (8) one obtains a

quadratic equation for e
�μ

kB(T +�T ) . From the two solutions one must
pick the one that has the correct limit

�μ = (ω0 − ε0)
�T

T

as λ → 0. The solution fulfilling this requirement reads
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Fig. 4. �μ vs. T −1�T for various values of T . Other parameters see text. The dashed
curves are the results from the approximate formula (9).

�μ ≈ (T + �T ) ln
e
− ε̃0

kB T

2λ
l0+1

[
e

ε̃0
kB(T +�T )

(
λ

l0 + 1
− e

2ε̃0−ω0
kB T

)

+
√

e
2ε̃0

kB(T +�T )

(
e

2ε̃0−ω0
kB T − λ

l0 + 1

)2

+ 4λ

l0 + 1
e

2ε̃0−ω0
kB(T +�T )

+ 2ε̃0
kB T

]
(9)

Since this expression is rather hard to interpret, we inspect it be-
havior for small λ. Taylor expanding it to first order results in

�μ ≈ (ω0 − ε̃0)
�T

T
− λ(T + �T )

l0 + 1
e

ω0−2ε̃0
kB T

[
e

ω0�T
kB T (T +�T ) − 1

]
The first term is identical to the result by Ermakov et al. [11]. The
correction is negative, i.e. the vibrations tend to initially reduce
the thermopower. Note that the strenght of this effect depends on
the relation between ε̃0 and ω0: If ω0 − 2ε̃0 < 0, it will be ex-
ponentially suppressed, while it is actually strongly enhanced for
ω0 − 2ε̃0 > 0.

Let us see in to what extent the approximate solution (9) is re-
liable. To this end we solve Eq. (8) numerically for �μ. As generic
parameter set we chose ε̃0 = ω0/8 and λ/(l0 + 1) = 1/40. Due to
the exponential structure a numerical solution fails for too small T .
Using multi-precision arithmetic, one can extend the range of solv-
ability slightly. We checked the stability of the root finding algo-
rithm by comparing the results for �μ at λ → 0 with the ana-
lytical result and found that stable solutions can be obtained for
T � 5 · 10−2ω0 using a precision of 100 digits. The resulting func-
tion �μ(�T ) for T = 5 · 10−2ω0, 10−1ω0 and ω0/2 is shown in
Fig. 4 as full lines, together with the approximate functions as
dashed lines. For low T we observe a linear dependence with neg-
ative coefficient, while at high T the sign of the thermopower
reverses. For intermediate T , however, one can see a rather pe-
culiar sign change of �μ as function of �T . Changing the model
parameter does not influence this qualitative behavior as long as
ω0 − 2ε̃0 > 0. For example, decreasing ε̃0 moves the zero in �μ
towards smaller values of �T , but also decreases the magnitude
of the effect. Increasing λ produces a similar behavior. However,
when ω0 − 2ε̃0 < 0 the features due to the vibrations vanish and
one recovers more or less the behavior for λ → 0, i.e. linear with
slope (ε̃0 − ω0)/T > 0.

The curves resulting from the approximate formula give, as ex-
pected from the assumptions behind this analytical approximation,
an accurate description for low temperatures, while for higher
temperatures deviations become more pronounced. However, the
qualitative behavior is well reproduced in all cases and we con-
clude that the analytical function represents a reasonable approxi-
mation for higher temperatures, too.

Fig. 5. Seebeck coefficient S = − �V
�T |�T →0 as function of T for two characteristic

values of ε̃0. Other parameters as in Fig. 4. The dashed curves are the result from
the approximate formula (10).

Finally, one can look at the initial slope of �μ(�T → 0), which,
when divided by the electron charge, is the negative Seebeck co-
efficient S for the junction. The result as function of temperature
for the same model parameters used in Fig. 4 is shown in Fig. 5.
Again, we include the result (e0 denotes the electric charge)

S ≈ kB

e0

1

kBT

[
ε̃0 − ω0

1 + λ
l0+1 e

ω0−2ε̃0
kB T

]
(10)

derived from the approximate formula (9) as dashed curve in
Fig. 5. It apparently describes the overall behavior quite well, be-
coming asymptotically exact for low T . Interestingly it also pro-
vides the correct asymptotic for high T . Note that the unit of the
thermopower is, as usual, determined by the universal ratio kB/e0
and is hence not model or parameter dependent. As already noted
in the case of �μ, we here, too, obtain a sensible dependence of
the Seebeck coefficient on ε̃0. When ω0 − 2ε̃0 > 0, it shows strong
variation with T due to the denominator in Eq. (10), while for
ω0 − 2ε̃0 < 0 the latter influence is exponentially suppressed and
hence one obtains a temperature dependence which is very similar
to the case without molecular vibrations. Since one can possibly
control the value of ε0 and hence ε̃0 experimentally, at least for
electrically gated molecules, the described effects and their switch-
ing could in principle be observable.

4. Summary

A simple model for an organic molecule attached to two con-
ducting leads via tunnel barriers was introduced. Main emphasis
was laid on the inclusion of vibration modes for this molecule
and to study their impact on transport properties, here especially
the thermopower. We derived an analytical approximate formula
for the thermopower �μ(�T ) and the Seebeck coefficient and
showed that for a rather broad range of model parameters the in-
fluence of the molecular oscillations can strongly influence these
two quantities. In particular, the thermopower can develop a pro-
nounced extremum and sign changes as function of temperature
gradient across the molecule, and the Seebeck coefficient showed
pronounced nonmonotonic behavior in this regime. When one
shifted the local electronic level of the molecule to larger values,
one can observe a transition into a regime where the vibrational
modes have negligible influence and the system behaves similar to
the case without any elastic degrees of freedom. Since in some ex-
perimental setups the local parameters are accurately controllable
via e.g. gate voltage or the like, we are certain that one can test
these theoretical predictions to some extent.

Of course, the simplifications introduced to allow for an analyt-
ical solution are rather severe: Electron spin as well as additional
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molecular levels were neglected, and the vibration modes were
restricted to a single mode. Furthermore, for the calculation of
the transport only two of the polaron levels were taken into ac-
count. The latter approximation can more easily be relaxed, even
within the proposed model (see Fig. 3a). Similarly, including sev-
eral vibration modes can be done straightforwardly (see for exam-
ple [12]), too, while taking into account more realistic electronic
level structures will actually require more refined analytical ap-
proaches [7] or a numerical solution of the resulting model for the
molecule [8]; and possibly also a reinspection of the validity of the
Meir–Wingreen formula for the current.

In any case, adding these additional and physically important
features to the model of the molecule makes the problem harder
to treat. At least as long as we stay in the weak-coupling limit, we
can expect that one can handle them reasonably within existing
numerical approaches, or even, up to the solution of the trans-
port equation, to a large extent analytically. The actual problematic
part is hidden in the solution of the transport equation, even in
weak coupling. Here, the exponential nature of the Fermi func-
tions renders the numeric root searching extremely awkward and
severely limits the accessible parameter and especially temperature
regime (see e.g. discussion of Fig. 4). Finally, relaxing the condition
of weak coupling to the leads leads to a full-scale many-body prob-
lem out of equilibrium, which at present cannot be really attacked
with reliable analytical or numerical tools. It will be interesting to
examine the asymmetry of barriers on influence the Seebeck ef-
fect with the vibrational degrees of freedom, which corresponds to
different degrees of contacts in STM experiments.

Thus, to conclude, we believe that even such an extremely sim-
ple model will be of some importance to increase our understand-
ing of properties of nano-systems, and can eventually also serve as
a benchmark for more advanced methods to be developed in the
future.
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