
See	discussions,	stats,	and	author	profiles	for	this	publication	at:
https://www.researchgate.net/publication/263902086

SELF-ORGANIZATION	AND
NONEQUILIBRIUM	STRUCTURES
IN	THE	PHASE	SPACE

Article		in		International	Journal	of	Modern	Physics	B	·	January	2012

DOI:	10.1142/S021797920803937X

CITATION

1

READS

25

4	authors,	including:

Sergei	Kruchinin

National	Academy	of	Sciences	of	Ukraine

88	PUBLICATIONS			233	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Sergei	Kruchinin	on	20	September	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/263902086_SELF-ORGANIZATION_AND_NONEQUILIBRIUM_STRUCTURES_IN_THE_PHASE_SPACE?enrichId=rgreq-a46f9894d2fb436161d154ec1778e270-XXX&enrichSource=Y292ZXJQYWdlOzI2MzkwMjA4NjtBUzo0MDgyMTYwMjMzODgxNjBAMTQ3NDMzNzY5Mjc5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/263902086_SELF-ORGANIZATION_AND_NONEQUILIBRIUM_STRUCTURES_IN_THE_PHASE_SPACE?enrichId=rgreq-a46f9894d2fb436161d154ec1778e270-XXX&enrichSource=Y292ZXJQYWdlOzI2MzkwMjA4NjtBUzo0MDgyMTYwMjMzODgxNjBAMTQ3NDMzNzY5Mjc5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a46f9894d2fb436161d154ec1778e270-XXX&enrichSource=Y292ZXJQYWdlOzI2MzkwMjA4NjtBUzo0MDgyMTYwMjMzODgxNjBAMTQ3NDMzNzY5Mjc5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergei_Kruchinin3?enrichId=rgreq-a46f9894d2fb436161d154ec1778e270-XXX&enrichSource=Y292ZXJQYWdlOzI2MzkwMjA4NjtBUzo0MDgyMTYwMjMzODgxNjBAMTQ3NDMzNzY5Mjc5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergei_Kruchinin3?enrichId=rgreq-a46f9894d2fb436161d154ec1778e270-XXX&enrichSource=Y292ZXJQYWdlOzI2MzkwMjA4NjtBUzo0MDgyMTYwMjMzODgxNjBAMTQ3NDMzNzY5Mjc5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Academy_of_Sciences_of_Ukraine?enrichId=rgreq-a46f9894d2fb436161d154ec1778e270-XXX&enrichSource=Y292ZXJQYWdlOzI2MzkwMjA4NjtBUzo0MDgyMTYwMjMzODgxNjBAMTQ3NDMzNzY5Mjc5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergei_Kruchinin3?enrichId=rgreq-a46f9894d2fb436161d154ec1778e270-XXX&enrichSource=Y292ZXJQYWdlOzI2MzkwMjA4NjtBUzo0MDgyMTYwMjMzODgxNjBAMTQ3NDMzNzY5Mjc5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergei_Kruchinin3?enrichId=rgreq-a46f9894d2fb436161d154ec1778e270-XXX&enrichSource=Y292ZXJQYWdlOzI2MzkwMjA4NjtBUzo0MDgyMTYwMjMzODgxNjBAMTQ3NDMzNzY5Mjc5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


May 15, 2008 14:49 WSPC/140-IJMPB 03937

International Journal of Modern Physics B
Vol. 22, No. 13 (2008) 2025–2045
c© World Scientific Publishing Company

SELF-ORGANIZATION AND NONEQUILIBRIUM

STRUCTURES IN THE PHASE SPACE

V. NOVIKOV∗, S. KRUCHININ†, N. N. BOGOLUBOV JR.‡ and S. ADAMENKO§

∗Institute for Electrophysics & Radiation Technology of NASU, Kharkiv, Ukraine
†Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine

‡V.A. Steklov Mathematical Institute, Moscow, Russia
§Electrodynamic Laboratory “Proton-21”, Kyiv, Ukraine

†skruchin@i.com.ua

Received 27 November 2007

We consider the possibilities of the formation of quasistationary distributions of particles
over energy with power asymptotics in nonequilibrium systems and dynamical systems
with couplings. It is shown that the Tsallis distribution is related to the exact solutions
of a kinetic equation of the Boltzmann type and those of covariant kinetic equations of
the Vlasov nonlocal statistical mechanics.

We have studied the connection of the power-like solutions of kinetic equations
with the eigenfunctions of fractional integro-differential operators and Jackson operators
within quantum analysis, and that of nonextensiveness parameters in the framework of
the Tsallis thermostatics, with flows in the phase space. It is shown that the processes
running in a nonequilibrium nonconservative medium can be described by the solutions
of the equation with fractional derivatives or Jackson derivatives for oscillations.

Keywords: Nonlinearity; nonequilibrium systems; nonlocal statistical mechanics; kinetic
equations.

1. Introduction

As an important achievement of physics for the last decade, we mention the devel-

opment of the theory of self-organization and synergetics, which render a permanent

influence on the studies in many branches of science. Moreover, the appearance of

structures as a result of the evolution of complex systems is the object of constant

attention. One of the main tools of the analysis of structures is nonequilibrium

thermodynamics.1

The achievements of the modern pulse technique in the derivation of great den-

sities of energy and power in pulses of different nature, allowing one to use the

concentrated flows of energy for the initiation of the processes of self-organization

in systems of many particles, and for the creation of structures in a very wide range

of spatial and energy scales. The least studied and, probably, most interesting field

for the analysis of mechanisms of the origin and the evolution of structures is the

research of the processes of self-organization in nuclear physics. The urgency of
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studies in this field and the necessity of new models in the theoretical investigation

of nuclear structures become clear from the analysis of the long-term European

program of nuclear studies.2

Although the theoretical studies demonstrating the necessity of the analysis

of fractal structures in the nuclear matter (Refs. 3–5) and the results of experi-

mental studies of the appearance of nuclear structures6–8 are constantly published,

the necessity of the general theoretical approach to the self-organization and the

thermodynamics of locally nonequilibrium systems is only strengthened.

From our viewpoint, more and more realizable now is the construction of a

general theoretical conception allowing the analysis of the origin and the evolu-

tion of structures under conditions of the essential nonlocality and irreversibility

of the multiparticle interaction in the framework of the kinetics and the nonequi-

librium thermodynamics of complex systems with couplings. In the theory of self-

organizing nuclear processes, one of the most important problems is the definition

of the principles of the evolution (variational principles) allowing one to determine

the energy trend of the evolution (i.e., the sign of the arising integral mass defect)

of macroscopic nuclear systems under significantly nonequilibrium conditions. The

complexity consists in that the systems of particles, which are of interest to us,

are nonideal systems with nonholonomic couplings. Hence, neither the variational

principles of the Hamilton dynamics nor the ordinary thermodynamic principles of

the evolution are, strictly saying, suitable.

The principles of the Prigogine nonequilibrium thermodynamics, which are tra-

ditionally used in the theory of self-organization, are based on the wide application

of the notion of locally equilibrium states to the description of thermodynamical

systems and inadequately describing the physical processes running in the systems

undergoing the action of a mass force, i.e., the action which is quasihomogeneous

inside the region occupied by particles, rather than an action concentrated only

on its surface. According to the Prigogine approach, the evolution occurs over lo-

cally equilibrium states, and the notion of “strongly nonequilibrium state” means a

state in which the values of macroscopic parameters of a system (such as the den-

sity, temperature, etc.) in locally equilibrium states are strongly inhomogeneous in

space. Such an approach leads to the decisive (for the evolution of a system) role

of flows in the coordinate space, which are related to the gradients of macroscopic

parameters.

In modern experimental setups, such levels of intensities of the flows of particles

and energy in systems of particles are available,9 at which the evolution occurs

over locally nonequilibrium states of the system. Moreover, the defining physical

quantity for all the elements of the system is the flow in the phase space of the

system, rather than a flow in the coordinate space.

In similar situations, the equilibrium states are absent, even in physically infi-

nite small regions of space. The nonlocal collective states of particles appear, the

properties of similarity of the system on all scales become significant, and the strong

correlations in the phase space are manifested.
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The key role of correlations in the systems of many particles was first clearly

shown in the fundamental work,10 and Vlasov was among the first to indicate the

necessity of the account of nonlocal properties of the dynamics observed in the

systems of many particles.11 He introduced the notion of collective variables into

physics and constructed a nonlocal statistical theory. The absence of locality leads

to the face that the influence on the physical processes is not limited by an infinitely

small neighborhood of the point under consideration, but requires us to account for

the finiteness of the interaction region and, hence, to consider all the orders of the

differentials of variables describing a state of the system. There exist two approaches

to the description of these effects.

In the first case, the functional and integro-differential equations with regard

to delay are used for the description of the evolution of the system, rather than

differential equations. This approach was developed by Volterra.12

In the other case, a specific space of support elements is used to describe the

nonlocality, rather than the 4-dimensional space-time.11 In Vlasov’s opinion, the

statistical theory of dynamical systems should be constructed in the Cartan space,13

which is the totality of points in the 4-dimensional Riemann space and the tangent

planes of different orders at every point. That is, the basic variable of statistical

theory are not only the coordinates, time, and velocities (momenta), but also the

accelerations of all orders.

The studies of many researchers in the field of kinetics and nonequilibrium

thermodynamics allow us to conclude that one of the very essential results of the

manifestation of nonlocality and nonholonomic couplings in dynamical systems is

the appearance of self-similar states in the phase space of a dynamical system

of particles. This conclusion follows from the fact that the power and power-like

distribution functions of particles over energy arise in a wide diversity of approaches

to the description of nonequilibrium systems.

As shown in Ref. 11, the nonlocality of statistical mechanics yields the Vlasov

covariant kinetic equation with self-consistent fields in the Cartan space, whose

exact solutions possess the power asymptotics.11,14 It was first shown in Refs. 15–17

that the Boltzmann kinetic equations in a homogeneous space can also possess the

exact power of locally nonequilibrium solutions, corresponding to steady flows in

the phase space. Currently, the thermodynamic properties of a system of many

particles, being in quasistationary nonequilibrium states with great correlations,

are often studied in the framework of the formalism of nonextensive thermostatics18

which is based on the application of the Tsallis quasipower distribution function

and the nonextensive generalization of entropy.

The substantiation of the use of such a nonextensive distribution function is the

important problem, and, as usual, its solution is based exclusively on the thermo-

dynamical arguments. The systems of many particles, which are characterized by

the distribution functions over energy with power asymptotics, are defined by the

peculiarities of nonholonomic couplings and flows in the phase space of the dynam-

ical system. As a result of the existence of such couplings, the system of interacting
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particles turns out to be irreversible and, from the thermodynamical viewpoint,

open.

In the present work, we will show that the distribution functions of a system

of many interacting particles, which are similar to those used in the Tsallis nonex-

tensive thermostatics, possess both the thermodynamic and kinetic foundations.

We will analyze the properties of nonlocality (and nonideality) of the oscillatory

processes in nonextensive states.

It will be shown that the systems with power-like distributions are nonconser-

vative on the macroscopic level on the fulfillment of the energy conservation law on

the level of binary interactions. The nonconservative properties of such flow systems

are well-described with the use of generalized derivatives (fractional derivatives19,20

and in the framework of quantum q-analysis.21). Such an approach to the descrip-

tion of the evolution of nonideal media with the use of fractional derivatives (or

quantum analysis) allows one to formulate the evolution of dynamical systems on

the basis of generalized variational principles (see, for example, Ref. 22).

2. Derivation of the Tsallis Nonextensive Distribution Function

from the Microcanonical Distribution

In the framework of the thermodynamic approach, we will show that the power

distribution functions arise on the account of the finiteness of the number of states

of the system and the thermostat (see, for example, Ref. 23).

Indeed, let the system Σ1 and the thermostat Σ2 under study contain, respec-

tively, N1 and N2 particles and be described by canonical variables x1 and x2. We

assume that

N2 � N1 . (1)

Let the collection of the canonical variables of the thermostat x2 consist of the

coordinates q2 and all the momenta of the thermostat p2. We present the thermostat

energy in the form of a sum of the kinetic and potential energies H(x2) = K2(p2)+

U2(q2).

We can consider the joint system (Σ1 and the thermostat) to be isolated. There-

fore, it can be described by the microcanonical distribution

w(x1, x2) =
1

Ω(E)
δ(E −H(x1, x2)) , (2)

where the Hamiltonian of the joint system consists of the Hamiltonians of both

subsystems and the interaction energy U12(x1, x2):

H(x1, x2) = H1(x1) +H2(x2) + U12(x1, x2) . (3)

It is obvious that the phase probability density of the system under study is

w(x1) =

∫

(x2)

w(x1, x2)dx2 (4)
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by the theorem of the addition of probabilities. We assume that there exists the

limit E/(N1 +N2) = (3/2)T , and the inequalities U12 � H1, H2 and H1(x1) � E

are valid.

Then, after the direct calculation of integral (4), we get

w(x1) ≈
1

Ω(E)

∫

(x2)

δ(E −H1(x1) −K2(p2) − U2(q2))dq2dp2 . (5)

By integrating with respect to the momentum variables dp2 of the thermostat, we

can represent the function w(x1) as

w(x1) =
1

Ω(E)

∫

(q2)

Ωk(E −H1(x1) − U2(q2))dq2 ,

Ωk(E) =
1

Ω(E)

∫

(p2)

δ(E −K2(p2))dp2 .

(6)

The quantity Ωk(E) is the derivative of the volume Γk(E) contained in the hyper-

surface of a given kinetic energy:

Ωk(E) =
dΓk(E)

dE
, Γk(E) =

∫

(K2(p2)≤E)

dp2 . (7)

By calculating the multiple integrals in Eq. (7), we obtain the relations Ωk(E) =

bE
3N2
2 −1 and b = (3N2/2)a. With their help, we transform Eqs. (6) to the form

w(x1) =
b

Ω(E)

∫

(q2)

(E −H1(x1) − U2(q2))
3N2
2 −1dq2 . (8)

Introducing the notations (1/1 − q) = (3N2/2) − 1, E = (1/1− q)T , and

B(E, q) = (bE
1

1−q /Ω(E)), we can represent the distribution function as

w(x1) = D(T, q) expq

(

−H1(x1)

T

)

,

D(T, q) = B(T, q)

∫

(q2)

(

1 − (q − 1)
U2(q2)

T − (q − 1)H1(x1)

)
1

q−1

dq2 .

(9)

In this formula, we used the q-generalization, expq(x), of the exponential func-

tion. Its inverse function lnq(x) appears as

expq(x) = (1 + (1 − q)x)
1

(1−q) , lnq(x) =
x1−q − 1

1 − q
. (10)

The functions expq(x) and lnq(x) are transformed, respectively, into the ordinary

exponential function and the ordinary logarithm as the parameter q tends to unity.

Thus, for a system of particles, the quasistationary distribution, which appears

on their interaction with the thermostat including a finite number of particles, turns

out to be quasipower and corresponds to nonextensive states with great correlations.

In what follows, we will study the physical circumstances which lead to quasis-

tationary states with similar properties on the basis of the exact solutions of kinetic

equations, rather than on the basis of the thermodynamic relations.
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3. Power Stationary Distribution Functions as the Exact Solutions

of Kinetic Equations

In the works of Refs. 15–17, the power distributions were obtained as the exact

solutions of the spatially homogeneous Boltzmann equation

∂f(v)

∂t
= Ist{f, f}+ Ψ(v) , Ist{f, f} =

∫

dv1dΩgσ(g, θ)(f ′f ′
1 − ff1) . (11)

Here, the standard notations f = f(v, t), f1 = f(v1, t), f
′ = f(v′, t), f ′

1 =

f(v′
1, t) for a binary collision and a scattering of particles with velocities (v,v1) ↔

(v′,v′
1) are used. In Eq. (11), g = |v − v1| — the relative velocity which turns

on the collision by an angle θ, σ(g, θ) — the scattering cross-section depending on

the form of the intermolecular interaction, dΩ — an element of the solid angle,

Ist{f, f} — the operator describing the collision of particles, and Ψ(v) — the term

representing sources and sinks in the velocity space.

The exact stationary solutions of Eq. (11) arise in the presence of steady nonzero

flows of particles (or energy) in the phase space. These flows are also related to

the availability of sources and sinks of energy (or particles) which are uniformly

distributed in the coordinate space and are concentrated in the phase space. The

action of such sources and sinks on the system of particles is similar to the action

of a mass force in the dynamical systems of mechanics. In this section, we will show

two qualitatively different cases of the appearance of power distributions. First, we

will demonstrate by the direct calculation that the Lenard–Balescu equation24 has

power solutions.

3.1. Power solutions of the Lenard–Balescu equation

The formation of quasistationary nonequilibrium distributions becomes most trans-

parent on the use of the kinetic equations for an isotropic distribution function of

particles in the form of a differential equation of continuity in the energy space. In

this case, the kinetic equation with a collision integral in the Lenard–Balescu form

(see, for example, Ref. 24) can be written in the form of the conservation law of

the number of particles:

∂f

∂t
+ div(j) = ψ(p, f) , Ist = −div(j) , ji = Dij

∂f

∂pj
+ Fif . (12)

The components of the flow vector of particles ji in the phase space are defined in

terms of the diffusion coefficient in the phase space Dij and the friction force Fi.

These quantities depend on the distribution function and the dispersion properties

of the medium according to the relations

Dij = −2e4m

∫

dk
kikj

k4

1

|ε(kv)|2
∫

dp′f(p′)δ(k(p − p′)) ,

Fi = 2e4m

∫

dk
kikj

k4

1

|ε(kv)|2
∫

dp′ ∂f(p′)

∂p′j
δ(k(p − p′)) .

(13)
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Consider the sources and sinks localized in the neighborhood of certain energies

and assume that they are absent in the remaining extensive region of energies. Then

it is obvious that the stationary states are determined from the equation div(j) = 0

or, hence, from the equation 4πp2jp = P .

The zero values of a flow in the phase space P lead to a solution in the form of

the equilibrium distribution functions which correspond to the detailed balancing

principle. In the case where the flow has nonzero values, this equation also possesses

the solutions with power asymptotics, which can be shown by the direct calculation

of the flow for the power distribution functions.

Let a distribution function have a power form. For the distribution function

with power asymptotics f = ApS , the dielectric permittivity of the medium can be

calculated and has the form15

ε(ω, k) = 1 − 16π2m2Ae2

ω2

∣

∣

∣

ωm

k

∣

∣

∣

S (ω

k

)3

α(S) + i
8π3m2Ae2

ω2

∣

∣

∣

ωm

k

∣

∣

∣

S (ω

k

)3

;

α(S) =

∫ ∞

0

dξξS+2

1 − ξ2
.

(14)

For the power asymptotics of the distribution function, the direct calculation (with

the use of relations (14)) gives the formulas for the “force” and “the diffusion

coefficient” in the phase space as functions of the exponent s and the normalizing

constant A of the distribution function:

Fi = −4πmAe4

Bp2

∫

dk

k3
k4

∣

∣

∣

∣

kp

k

∣

∣

∣

∣

s
1

∣

∣

∣

kp

k

∣

∣

∣

2s+2

(

kp

k

)2

pi = −4π2mAe4k4
max

B
p−s−2pi

1

1 − s

Dij = − 2πmAe4

(S + 2)p2B

∫

dk

k5

∣

∣

∣

∣

kp

k

∣

∣

∣

∣

S+2
k4

∣

∣

∣

kp

k

∣

∣

∣

2S+2

×
{

δij [k
2p2 − (kp)2] + [3(kp)2 − k2p2]

pipj

p2

}

. (15)

Then the total flow in the phase space Jp = 4πp2jp takes the form

Jp = 4πp2πAe
4(2m)1−s

ω4
pm

4
k4
maxp

2s+5

[

p
∂f

∂p

1

(s+ 1)(2s+ 9)
− 2

(2s+ 7)
f

]

=
4π2Ae4(2m)1−2s

2ω4
pm

4
k4
maxp

4s+7 (4s+ 9)

(s+ 1)(2s+ 9)(2s+ 7)
. (16)

The calculation of the divergence of this expression gives a collision integral in

the form:

Ist =
16πA2e4k4

max

ω4
pm

ε2(s+1) (4s+ 7)(4s+ 9)

(s+ 1)(2s+ 9)(2s+ 7)
. (17)
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Relation (21) yields the existence of two solutions: s = −9/4 and s = −7/4. As seen

from Eq. (16), the solution s = −7/4 corresponds to the steadiness of the flow of

particles in the phase space. It is easy to show that the second solution corresponds

to the steadiness of the energy flow in the phase space. The calculated exponents

are in agreement with the general relations obtained in the work15 of the following

form:

s = s1 = −(αW + 3d)
1

2β
, s = s0 = s1 + 1/2 . (18)

According to these relations, the exponents depend only on the degree of similarity

of the matrix element of interaction αW , the degree of similarity of the dependence

of the energy on the momentum β, and the dimensionality of the momentum space

d, and do not depend on other parameters, for example, on the number of degrees

of freedom, like the case of the thermodynamic function obtained in Sec. 3.1.

However, the kinetic equations also have the solutions with somewhat different

structure, which is characterized by a new type of the dependence of the exponent

on the parameters of the problem. Namely, the exponent is determined by the

magnitude of a steady flow in the phase space. We will demonstrate the existence

of such solutions for the Boltzmann kinetic equation for particles with the Maxwell-

type interaction potential (Maxwell molecules, the polarization interaction, etc.).

3.2. Power solutions of the kinetic equation for Maxwell molecules

For the Maxwell-type interaction, we have gσ(g, θ) ≈ α(cos θ) ≈ const. in Eq. (11).

The collision integral for such interactions possesses a number of specific features

(see Refs. 25 and 26). In particular, it is convenient to analyze the kinetic equation

(11), by using integral transformations on the basis of the Fourier transformation:

Φ(y) = R̂{F (x)} =

∫ ∞

0

dx0F1

(

3

2
,−xy

)

F (x) ,

F (x) = R̂−1{Φ(y)} =
1

Γ2

(

3

2

)

∫ ∞

0

dy0F1

(

3

2
,−xy

)√
xyΦ(y) .

(19)

Here, Γ(α) is the gamma-function, 0F1(3/2,−xy) = (1/2
√
xy) sin(2

√
xy), pFq is

the generalized hypergeometric function).

As follows from the definition, Φ(y, t) is the generating function for the moments:

Φ(y, t) =

∞
∑

n=0

(−1)n

n!
Mn(t)yn , Mn(t) =

1
(

3

2

)

n

∫ ∞

0

F (x, t)xndx ,

(α)n =
Γ(α+ n)

Γ(α)
.

(20)
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The stationary nonequilibrium states are determined by the equation which

follows from Eq. (4) and has the form Π{F, F, x} =
∫ x

0
dx′Ψ(x′).

The integral transformation (19) reduces the kinetic equation (11) to an integral

equation in the form of a convolution for the function Φ(y):

∂Φ

∂t
− 1

y

∫ y

0

dξΦ(ξ)Φ(y − ξ) = −M0 stΦ + ΨR(y) , [ΨR(y) = R̂{ψ(x)} . (21)

Here, M0 st is a stationary value of the zeroth moment of the distribution function.

The Laplace transformation L̂z{Φ(y)} ≡ G(z) =
∫∞

0 dye−zyΦ(y) reduces Eq. (21)

to a differential equation which has the form of the Riccati equation

M0 st
∂G

∂z
+G2 + ψ(z) = 0 , ψ(z) = L̂z{yψ(y)} (22)

for stationary states. Since Φ(y, t) is the generating function for the moments of the

distribution function, it is easy to obtain a closed chain of evolutionary equations

for any higher normed moments, by substituting the expression for Φ(y, t) in terms

of the moments of the distribution function (20) in the integral equation (21). All

moments of order k < n can be obtained for an arbitrarily great n.

Let us obtain the asymptotics of the distribution function. By applying the

integral transformations (19) and the Laplace transformation for δ-like sources and

sinks, we obtain the contributions to the equation for Φ(y) and G(z):

ψδ
i = Qi 0F1

(

3

2
;−xiy

)

=
Qi

2
√
xiy

sin(2
√
xiy)ψ

δ
i (z)

= L̂z(yψ
δ
i ) = Qi

1

z2 1F1

(

2;
3

2
;−xi

z

)

. (23)

We will consider the case of a single wide inertial interval. In these cases, the flow

functions are simplified and have the asymptotics ψ(z) = P/z2 and P = ±Qi. Then

the kinetic equation for G(z) in the inertial interval takes the form of the Riccati

equation M0 st(∂G/∂z) +G2 + (P/z2) = 0, whose solutions are determined by the

relation

G(z) =
M0

z

c1s1z
s1 + c2s2z

s2

c1zs1 + c2zs2
; s1 =

1 − v

2
; s2 =

1 + v

2
; v =

√

1 − 4P

M2
0

.

(24)

Here, c1 and c2 are arbitrary constants. By expanding G(z) in a generalized power

series in z−v and by performing the inverse Laplace transformation termwise, we

get

Φ(y) = cM0s1 +M0(s2 − cs1)Ev

(

−y
v

c
; 1

)

. (25)

Here, Ev(x;µ) =
∑∞

k=0(x
k/Γ(µ+ k(1/v)) is the Mittag–Leffler entire function.

In order to find the distribution function, it is necessary to carry out the in-

verse Laplace transformation. Preliminarily, we introduce the new function Φs(y) =
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esyΦ(y) which coincides with Φ(y) as s → 0. Now, the inverse transformation of

Φs(y) can be performed termwise with the expansion of Ev(x; 1) in a series. Thus,

we obtain the distribution function as

Fs(x) = c
M0s1
Γ(3/2)

√
x

s3/2
e−

x
s +

M0(s2 − cs1)

Γ2(3/2)

√
x

s3/2
e−

x
s

×
∞
∑

n=1

(−1)n

cn
Γ(νn+ 3/2)

Γ(vn+ 1)svn+3/2 1F1

(

−vn;
3

2
;
x

s

)

. (26)

Here, c is an arbitrary constant which must be determined from the normaliza-

tion condition. Taking the relation F (x) = lims→0 Fs(x) into account and using

the asymptotic expansion of the confluent hypergeometric function, we obtain the

asymptotics of the distribution function in the inertial interval in the following

form:

F (x) ∝ M0(s2 − cs1)

Γ(3/2)

(

−1

c

)

Γ(v + 3/2)

Γ(v + 1)Γ(−v)
1

xv+1
= A

1

xv+1
. (27)

Thus, we have obtained the asymptotics of the stationary distribution function

in the inertial intervals with different directions of the flow in the phase space. It is

worth noting that the power characters of its behavior in these inertial intervals are

different. In this case, the exponent is determined by a magnitude of the flow (and

by its sign) and serves as an example of the new type of universality for stationary

nonequilibrium systems. As seen from Eq. (24), v−−→
P → 0

1. Nullifying the flow leads

to equilibrium distributions, and the different signs of the flow correspond to the

cases where the index v > 1 and v < 1.

Above, we have analyzed only the final form of the distribution functions formed

as a result of the evolution of the systems of particles with sources and sinks of par-

ticles or energy. We now consider the evolution of the formation of nonequilibrium

stationary states with steady flows in the phase space. As usual, the coupling be-

tween the distribution function and a flow is assumed in the form of a relation local

in time, i.e., the distribution function and the flow are referred to in the same time

moment.

At the great intensities of sources and hence, at the strong nonstationarity, it

is necessary to account for the characteristic duration of the relaxation of a flow

of particles τ . In this case, we should consider the relaxation of the flow between

collisions. Then the kinetic equation for the isotropic distribution function takes

the form of a system of equations of the hyperbolic diffusion in the energy space:

∂f

∂t
= − 1

4πv2

∂

∂v
J{f, v} + Ψ(v) ; τ

∂J

∂t
+ J = Π(v, {f(v)}) . (28)

As usual, the formulas for the flows of interacting particles contain integro-

differential operators, and the study of the processes of evolution of the distribution

function becomes quite a complicated problem.

The analysis of the time evolution of a distribution function can be performed

in a significantly simpler way, if the kinetic equation has the form of a differential
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equation. Such physical cases are well-known: for example, we mention the interac-

tion of photons and electrons (the Kompaneets equation for Compton processes27).

In the next section, we will analyze this equation.

3.3. Evolution of the distribution functions to the stationary

nonequilibrium solutions of a kinetic equation in the

differential form

We now consider the formation of nonequilibrium quasistationary states of photons

which interact with the free gas of electrons at a temperature T and possess the

distribution functions f(v) over frequencies v. It is convenient to introduce the

dimensionless energy of a boson, x, instead of the frequency and the dimensionless

time: x = (hv/mc2), t = τv0, α = T/mc2, v0 = σTnec. Then the Kompaneets

equation can be written in these variables as the hyperbolic system

∂f

∂t
= − 1

x2

∂J

∂x
+ ψ(x) , τJ

∂J

∂t
+ J = Π(x, {f(x)}) ,

Π(x, {f(x)}) = −x4

(

α
∂f

∂x
+ f + f2

)

.

(29)

We assume that the sources and sinks are localized near certain frequencies vi,s

(here, vi,s are the characteristic frequencies of a source and a sink, respectively).

The stationary nonequilibrium solution of the kinetic equation, which nullifies the

collision integral, can be realized in the region of frequencies between a source and

a sink, i.e., vi < v < vs, and is determined from the equation

Π(x, {f(x)}) = −
∫ x

0

dx′x′2Ψ(x′) . (30)

The solution of Eq. (30) determines the nonequilibrium distribution with the

steady flow of a number of particles in the energy space and has, as shown in Ref. 28,

power asymptotics. In Fig. 1, we present the results of the numerical analysis of

the evolution to these distributions.

We have assumed that the initial distribution is the equilibrium Planck one,

and the δ-like source of quanta is positioned in the region of high frequencies. In

Figs. 1(a) and 1(b), we show, respectively, the evolutions of the distribution function

and the flow.

It is well-seen that the formation of a stationary distribution function of photons

over the frequency occurs through the formation of the regions of frequencies, in

which the flow becomes almost independent of the frequency. In these regions, the

distribution functions have power character. We see the trajectories of perturba-

tions of the distribution function, which start from the source and form the very

distribution function.

The evolution shown in these figures is characteristic of many other physical

situations. For example, one observes a similar evolution of phonons and electrons

in solids.
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Fig. 1. Evolution of the dependence of the distribution function of photons and their flow on the 
(a) (b)

Fig. 1. Evolution of the dependence of the distribution function of photons and their flow on the
frequency. In Fig. 1(a), we present the distribution function multiplied by the density of states of
the photon gas g(x, t) = x2f(x, t).

Using the above-given numerical solutions of the Kompaneets kinetic equation

with a monochromatic source, we can show that the evolution results in the forma-

tion of the distribution function of photons which can be represented in the analytic

form involving the quasipower function expq(x):

fq(ε) =
1

expq

(

ε− µ

T

)

− 1

. (31)

This solution is a generalization of the Planck function with chemical potential

µ to the nonequilibrium case, and its parameters depend on the magnitude of the

flow of quanta in the phase space. The plots of the distribution function of photons

for various magnitudes of the flow are shown in Fig. 2. The distribution function

of photons over frequencies is positioned above the Planck equilibrium distribution

function, if the flow is directed toward the region of high energies. If the flow in the

phase space is directed toward low energies, then the nonequilibrium distribution

function has smaller values than the equilibrium one.

We note that the Kompaneets equation can describe not only photons. Equa-

tions of the Kompaneets type describe, for example, phonons in solids.

We mention the application of this equation to the description of the kinetics of

pions in the nuclear matter. On the level of scales of the energies and the masses of

hadrons (≈ 1 GeV), we can neglect the pion mass and describe the electromagnetic

phenomena of the pion-nucleus interaction in the “soft” limit.

In this case, the hyperbolic character of the equations yields the possibility for

shock waves to arise in the spectrum of pions analogously to the solutions obtained

for photons in Ref. 29.
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Fig. 2. Distribution functions of photons for various flows in the phase space. The central curve Fig. 2. (Color online) Distribution functions of photons for various flows in the phase space.
The central curve corresponds to the Planck distribution function (the zero flow). The curves
are positioned above and below of the equilibrium distribution depending on the flow direction:
toward the increase in energy or in the opposite direction.

4. Oscillatory Processes in Quasistationary Nonequilibrium States

The Tsallis thermostatics is constructed on a formal generalization of the expo-

nential and logarithmic functions on the basis of the power-like functions (10). In

terms of these functions, the main thermodynamic quantities including, first of all,

entropy are expressed. The power character of the used generalizations is related to

the properties of similarity and nonlocality of the systems in nonequilibrium states.

The nonextensive nonideal states of a system must reveal themselves, natu-

rally, also in the oscillatory processes which are realized in the systems with such

quasistationary states. To study the peculiarities of these processes, we introduce a

generalization of trigonometric functions on the basis of the q-exponential functions

(10). The new functions are

q cos(z) =
expq(i z) + expq(−i z)

2
; q sin(z) =

expq(i z) − expq(−i z)
2i

. (32)

These functions pass in ordinary trigonometric functions as q → 1. However, the

greater the deviation of the nonextensiveness parameter q from unity, the greater

the deviation of the behavior of these functions from that of the ordinary functions.

Moreover, the character of the deviation is significantly different for q < 1 and

q > 1. In Fig. 3, we show oscillations in the media with q > 1 and q < 1. It is seen

that the medium for q > 1 is passive (oscillations decay), whereas the medium for

q > 1 is active (oscillations are strengthened). Such simplest oscillatory modes can

be described by solutions of the ordinary equation for oscillations with decay or

instability (d2x/dt2) + 2δ(dx/dt) + ω2x = 0. This equation has a general solution

in the form of decaying oscillations:

x = e−δt sin
(

√

ω2 − δ2t+ ∆ϕ
)

. (33)
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damping decrement of linear oscillations. 

(a) −q > 1 (b) −q < 1

Fig. 3. (Color online) Oscillations in a nonequilibrium medium.

By comparing the linear oscillations and the oscillations in a nonequilibrium

medium and taking the condition of the maximum closeness of trajectories (for

example, in the sense of the quadratic norm), we can obtain the connection of

the nonextensiveness parameter q and the instability increment or the damping

decrement of linear oscillations.

As was noted at the beginning of the present work, the nonequilibrium states

are closely related to the nonlocality (and, hence, to the memory effects) and can

be described with fractional integral operators.19,20 The influence of the memory

effects is manifested in the system in that the external forces F (t) acting on the

system cause the origin of a flow of particles:

J(t) =

∫ t

0

dt′M(t− t′)F (t′) , (34)

where M(t− t′) is the memory function. When the memory function has the char-

acter of the δ-function, then the system has no memory. In this case, the flow at

the time moment t is determined by the force at the same time moment. On the

power behavior of the memory function M(t− t′) ∝ (t− t′)α−1, the memory man-

ifests itself, and the coefficient 0 < α < 1 characterizes the degree of conservation

of the memory in the system (α = 1 corresponds to the ideal memory). In this

case, the flow can be written in terms of the fractional integrals which are a natu-

ral generalization of the iterated integral in the n-dimensional space (the Cauchy

formula),

Ing(x)
def
=

∫ x

x0

∫ xn−1

x0

· · ·
∫ x1

x0

g(ξ)dξdx1 · · · dxn−1 =
1

(n− 1)!

∫ x

x0

g(ξ)

(x− ξ)1−n
dξ ,

and are given by the formula28

Ivg(x) ≡ D−vg(x)
def
=

1

Γ(v)

∫ x

x0

g(ξ)

(x− ξ)1−v
dξ . (35)

Finally, we write

J(t) = J0D
−αF (t) . (36)
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The integral operator determining the flow in Eq. (36) can be considered as

the regularizing operator for a force acting on particles29 and, simultaneously, as

the averaging operator which takes the character of the action into account in

a self-consistent way. As mentioned in Ref. 30, the memory significantly affects

the oscillatory process. Indeed, let us consider the oscillations in a medium with

memory. The equation with fractional derivatives for oscillations in the medium

with the memory coefficient α looks like

D2−αq + ω2q = 0 , (37)

and its exact solution can be written in terms of the Mittag–Leffler function as

q(t) = c1tE2−α,2(−ω2t2−α) + c2E2−α,1−α(−ω2t2−α) . (38)

The analysis of this solution allows us to conclude that the influence of the

memory effects, as well as that of the effects arising in nonequilibrium states, is

equivalent to the effective damping. This is seen from the comparison of the phase

portraits of oscillations in a nonequilibrium medium and in a medium with memory

shown in Fig. 4.

By optimizing the difference of phase trajectories by the method of least squares,

we obtain the dependence of the nonextensiveness parameter q on the memory

parameter α:

q(α) = 3.96− 4.00α+ 1.05α2 . (39)

In connection with the fact that the nonequilibrium states and the memory

effects lead to power functions, we may assert that the properties of similarity join

all the effects under consideration. The effects of similarity, from our viewpoint, are

most naturally described in the framework of quantum analysis.

Fig. 4. Phase trajectories of oscillations in a nonequilibrium medium and in a medium with
memory.
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5. Quantum Analysis and Nonequilibrium States

The ordinary derivatives are customarily introduced on the basis of shear transfor-

mations of the argument, therefore, the effects of similarity enter into such differ-

ential calculus not quite naturally. In quantum analysis, this drawback is overcome

with the use of Jackson operators21 (see also Refs. 34 and 35). The merit of quantum

analysis consists in that the q-derivatives (Jackson derivatives) are introduced on

the basis of a scale transformation of the argument (with the similarity coefficient

q):

Dqf(x) =
f(qx) − f(x)

qx− x
. (40)

In the limit case q → 1, the Jackson derivative passes in the ordinary derivative

D1
xf(x) = limq→1 Dqf(x). As for the quantum q-derivative of a power function, it

is calculated in a very simple way: Dqx
n = ((qx)n − xn/(q − 1x) = (qn − 1/q −

1)xn−1 = [n]xn−1. Here, we have introduced q-numbers [α]q = (qα − 1/q − 1) which

are related to the q-generalization (10) of a logarithm: lnq(x) = (x1−q − 1/1− q) =

(x−1([1 − q]x/1−q). It is also simple to find the derivative of a function possessing

the property of similarity. Let f(qx) = qαf(x), then

Dqf(x) =
(qαf(x)) − f(x)

(q − 1)x
=
qα − 1

q − 1

f(x)

x
= [α]

f(x)

x
.

In quantum analysis, one widely uses the q-generalization of an exponential

function:

ex
q =

∞
∑

k=0

xn

[k]!
. (41)

The difference consists in the change of the ordinary function k! by the symbol [k]!

such that

[k]! = 1 , if k = 0 and [k]! = [k][k − 1] · · · [k] , if k ≥ 1 . (42)

It is easy to see that such a definition leads to the fact that the function ex
q is the

eigenfunction of the operator Dq :

Dqe
x
q = Dq

(

∞
∑

k=0

xk

[k]!

)

=

∞
∑

k=0

1

[k]!
Dq

(

xk
)

=

∞
∑

k=1

[k]

[k]!
xk−1 =

∞
∑

k=1

1

[k − 1]!
xk−1 = ex

q .

(43)

The generalized exponential function e−x
q tends to the ordinary one as q → 1, and

decreases more slowly with increase in x for q < 1 than the ordinary exponential

function, which is shown in Fig. 5.

The quantum derivative is a linear operator. Therefore, the q-derivative of a

linear combination of functions is expressed through the derivatives of separate
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Fig. 5. (Color online) Plots of the exponential function and its q-generalization for different
values of q:

• Upper curve — for the function ex

q
for q = 0.001.

• Lower curve — for the exponential function.

functions by the ordinary formula. However, the q-derivative of a product of func-

tions has its own peculiarities. Definition (39) directly yields the relations which

differ from the ordinary ones by the asymmetry:

Dq(f(x)g(x)) = f(qx)Dqg(x) + g(x)Dqf(x)

Dq(f(x)g(x)) = f(x)Dqg(x) + g(qx)Dqf(x) .
(44)

For the functions possessing the similarity, i.e., f(qx) = qαf(x) and g(qx) =

qβg(x), we get:

Dq(f(x)g(x)) = f(x)Dqg(x) + qβg(x)Dqf(x)

= f(x)Dqg(x) + g(x)Dqf(x) + (qβ − 1)g(x)Dqf(x) . (45)

It follows from this relation that the similarity parameter of the quantum differen-

tiation, q, simultaneously characterizes the degree of its asymmetry.

Let us consider the peculiarities of oscillatory processes in media with regard to

their similarity. To this end, we consider the q-trigonometric functions

cosq(z) =
ei z

q + e−i z
q

2
; and sinq(z) =

ei z
q − e−i z

q

2i
(46)

which are the solutions of the equation for oscillations given in the form Dq

(Dqf(x)) + f(x) = 0. The phase trajectories for this equation in the cases where

the nonextensiveness parameter q < 1 and q > 1, are shown in Fig. 6.

It is seen that the phase portraits of q-oscillators are similar to those for decaying

or unstable oscillations. We may say that the fractality of the medium leads to

its nonideality (the medium becomes either passive or active). The character of

oscillatory processes depends on the similarity parameters and, with regard to the

above-mentioned couplings (see Sec. 3.3), on the direction of flows in the phase

space.
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Fig. 6. Phase trajectories for the oscillatory process in a medium with similarity.

6. Conclusion

The self-organization of a system of particles is related, naturally, to the growth of

structures. However, in the framework of nonequilibrium thermodynamics, one usu-

ally considers the growth of structures in the coordinate space. In this case, homo-

geneous systems of particles are analyzed as equilibrium systems without structures

and flows. However, the structures in spatially homogeneous systems can appear

not only in the configurational space, but also in the momentum one. The analysis

of a growth of structures in the whole phase space is a very complicated problem.

To solve it, we propose the following approximate approach including two stages.

On the first stage, we consider a system of particles which is homogeneous in the

configurational space and undergoes the action of spatially homogeneous sources of

energy or particles. Such an action is quite analogous to the action of a mass force

in theoretical mechanics, and leads to the appearance of the flow in the momentum

space (the flow of particles or energy in the energy space).

The flows in the momentum space lead to nonlocal nonextensive states of the

system of interacting particles. On the second stage, it will be necessary to con-

sider the formation of spatially inhomogeneous structures in systems with locally

nonequilibrium states of particles, which are determined on the first stage.

In the framework of the first stage of the analysis of the processes of self-

organization, we have analyzed the various approaches to the description of

properties and conditions of the formation of nonextensive states in systems of

many particles on the basis of kinetic equations with different forms of the collision

integral:

• For classical statistics, it is shown that there exist the power-like functions which

nullify the Lenard–Balescu collision integral and the Boltzmann collision integral

for Maxwell molecules in spatially homogeneous systems of particles;
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• We have demonstrated the appearance of power asymptotics of the distribution

functions of Maxwell molecules with the exponents, depending on the magnitude

and the direction of flows in the phase space;

• We have proposed and analyzed the Kompaneets hyperbolic equation with regard

to the relaxation of the flow of photons in the frequency space.

By using the Kompaneets hyperbolic equation, we have demonstrated the for-

mation of the power-like distribution functions of photons with regard to the sources

of gamma-quanta, which leads to the appearance of the flow of quanta in the fre-

quency space of the system of photons. The results of numerical calculations of the

evolution show that the power asymptotics arise in those frequency regions where

the flow turns out to be independent of the frequency of quanta. The condition for

locally nonequilibrium distribution functions to be formed is the condition for the

source power Qi ensuring the excess of the formed nonequilibrium flow over the

flow of particles tending to establish the equilibrium distribution function with the

effective density n0(Qi > (n0/τ)).

We have presented the analogy between photons and pions in the “soft” limit

(when the ratio of the masses of a pion and a nucleon tends to zero), in order to

study the evolution of the distribution function of pions in a nuclear system with

regard to the processes of photoproduction of pions.

We have obtained the connection between the nonextensiveness parameter and

the similarity parameter using the quantum q-generalization of the exponential

function, which ensures the qualitative coincidence of the behaviors of the Tsallis

distribution function and the generalized quantum exponential function.

We have shown that the oscillatory processes in nonequilibrium nonconservative

media can be described by the equations for oscillations with the use of Jackson

derivatives or fractional derivatives instead of ordinary ones. We have obtained the

dependence of the damping increment or decrement on the exponent of a fractional

derivative or the similarity coefficient in the Jackson derivative. That is, it is possible

to change the operators,

∂

∂t
+

1

τ
→ Dα or

∂

∂t
+

1

τ
→ Dq , (47)

by conserving the qualitative behavior of phase trajectories of the system. These

effects cause the appearance of the derivatives, whose order depends on the frac-

tality or nonconservativeness of the medium, in kinetic equations. For example, the

Kompaneets-type differential kinetic equations (29) for the evolution of the distri-

bution function of bosons (δ = 1) or fermions (δ = −1) are transformed to the

form

g(ε)
∂f(ε, t)

∂t
= − ∂α

∂εα
[j(ε, t)] + g(ε)ψ(ε),

τ
∂βj(t, ε)

∂tβ
= D(ε)

(

T
∂αf

∂εα
+ f(1 + δf)

)

.

(48)
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These equations can become the basis of the kinetic theory of fractal media.

The solutions of the fractional integro-differential equations (48) have the power

asymptotics which correspond to the well-known modes of sub- or superdiffusion.

From our viewpoint, the use of relations (47) will allow one to formulate, in the

future, both the Hamilton equations by applying fractional operators (or quantum

analysis) for a system of particles in the nonconservative case, and the relevant

variational principle. The further study of the growth of structures in the framework

of the second stage can be carried out by using the Vlasov covariant kinetic equation

with regard to the self-consistent fields in locally nonequilibrium states. One of the

most important applications of this theory to the study of the evolution of structures

in nuclear physics under a modification of Coulomb barriers in nonequilibrium states

will be analyzed in the subsequent work.
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