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We deal with the problem of nanoscale superconductivity. Nanoscale superconductivity
remains to be one of the most interesting research areas in condensed mater. Recent tech-
nology and experiments have fabricated high-quality superconducting MgB2 nanopar-
ticles. We consider the two-band superconductivity in ultrasmall grains, by extending
the Richardson exact solution to two-band systems, and develop the theory of interac-
tions between nano-scale ferromagnetic particles and superconductors. The properties of
nano-sized two-gap superconductors and the Kondo effect in superconducting ultrasmall
grains are investigated as well. The theory of the Josephson effect is presented, and his
application to quantum computing are analyzed.
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1. Introduction

Recent advances in nanoscience have demonstrated that fundamentally new phys-

ical phenomena are found, when systems are reduced in size to dimensions which

become comparable to the fundamental microscopic lengths of the investigated ma-

terial. Superconductivity is a macroscopic quantum phenomena, and it is therefore

especially interesting to see how this quantum state is influenced when the sam-

ples are reduced to nanometer sizes. Recent developments in nanotechnologies and

measurement techniques nowadays allow the experimental investigation of the mag-

netic and thermodynamic superconducting properties of mesoscopic samples in this

regime.

In this review, we develop some theoretical models to describe such nanoscale

superconducting systems and explore possible new experimental phenomena which

we can predict based upon these theoretical models. In bulk samples, the stan-

dard Bardeen–Cooper–Schrieffer (BCS) theory gives a good description of the phe-

1230013-2



September 6, 2012 8:37 WSPC/Guidelines-IJMPB S0217979212300137

Nanoscale Superconductivity

Fig. 1. The smallest superconductor in the world.

nomenon of superconductivity.1 However, it was noticed by Anderson in 1959 that,

as the size of a superconductor becomes smaller, and the quantum energy level

spacing of the electrons in the sample approaches the superconducting gap, then

the BCS theory will fail.2 The exact solution to the reduced BCS Hamiltonian for

finite-size systems was developed by Richardson in the context of nuclear physics a

long time ago.3 This shows that, while the grand canonical BCS wavefunction gives

a very accurate solution of the BCS Hamiltonian in the limit where the number of

electrons is very large N≫ 1, for small values of N , one has to use exact analytical

methods to obtain reliable results.

The recent experimental advances in fabricating and measuring superconductiv-

ity in ultrasmall mesoscopic and nanoscale grains has renewed a theoretical interest

in the Richardson solution.4–7 Reference 10 shows the measurement for the smallest

size of a superconductor in the world which is 5 A, Fig. 1.

Such systems are interesting for nanoelectronics and quantum computing.

In this review, we propose to develop theoretical models for nanoscale super-

conducting systems and to apply these models to a variety of systems of current

experimental interest. The Richardson solution depends on the electron energy

level spacings near to the Fermi level, and so these different geometric shapes will

lead to different size dependences of the thermodynamic and electronic proper-

ties. Property small superconducting granules depends on the parity of the number

of electrons N . By participating in Cooper pairing phenomenon has been called

“the phenomenon of parity”. Similar phenomena have long been known in nuclear

physics. In 1992, the parity effect experimentally observed in a small granules of

aluminum.

Experiments have recently demonstrated superconductivity in one-dimensional

nanowires of lead8 and carbon.9 Our theoretical predictions will include the even–

odd parity effects in tunneling spectra, which have already been observed on the
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Fig. 2. Illustration of superconductor grains.

Fig. 3. Size effect in superconductor grains.

Fig. 4. Carbon nanotube revealing superconductivity.

nanometer scale in Al grains, (Fig. 2),4 but which could also be observed in

nanotube superconductors. In Figs. 2 and 3, we can see the ensemble of small

metallic grains which can be in the normal or superconducting state. For such sys-

tems, the important parameters are the granular size (l), electron coherence length

(ξ) and the penetration depth (λ).10 In grains, there appears the quantum size

effect (discretization of the electron energy spectrum). In Fig. 3, we show the size

effect in grains. We note that the level spacing depends on many parameters such

as the electron coherence length and the penetration depth.

Carbon nanotubes were first observed in 1991 by Iijima in Japan, Fig. 4.

Superconductivity was discovered in the simple binary compound MgB2, in

Ref. 18, with Tc = 39 K which is the highest temperature among the two-component

systems. Magnesium diboride is reported to be an anisotropic superconductor with
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conventional BCS electron–phonon coupling.19 In the recent years, great efforts have

been devoted to the fabrication of MgB2 nanostructures that could play a crucial

role in the field of applied superconductivity.24 Recent technology and experiments

have fabricated high-quality superconducting MgB2 nanoparticles.

In this review, we investigate properties of nanosize two-gap superconductivity

by using a two-sublevel model in the framework of the mean-field approximation.

A model corresponding to a nanosize two-gap superconductivity is presented, and

the partition function of the nanosize system is analytically derived by using the

path integral approach. A definition of the critical level spacing of the two-gap

superconductivity is also presented, and we discuss the condensation energy and

the parity gap of two-gap superconductivity in relation to the size dependence

of those properties with two bulk gaps and the effective pair scattering process

between two sublevels. We present the theory of interactions between two nanoscale

ferromagnetic particles embedded into a superconductor and spin orientation phase

transitions in such a system. We also consider the ideas of quantum computing and

quantum information in mesoscopic circuits. The theory of the Josephson effect is

presented, and its applications in quantum computing are analyzed. The results of

this chapter were obtained by the authors and published in works.10,12–14

2. Nanosize Superconductivity

Recent experiments15,16 by Black et al. have also generated a high interest in the

size dependence of the superconductivity. Properties of ultrasmall superconducting

grains have been theoretically investigated by many groups.17–23 In such ultrasmall

grains, the old but fundamental theoretical question was noticed by Anderson.2

The standard BCS theory gives a good description of the phenomenon of supercon-

ductivity in large samples. However, as the size of a superconductor becomes small,

the BCS theory fails. In ultrasmall Al grains, the bulk gap has been discussed in

relation to physical properties in ultrasmall grains such as the parity gap,20 con-

densation energy,23 electron correlation,18 etc. with the size dependence of the level

spacing19 of samples.

Superconductivity was discovered in the simple binary compound MgB2, in

Ref. 18, with Tc = 39 K which is the highest temperature among the two-component

systems. Magnesium diboride is reported to be an anisotropic superconductor with

conventional BCS electron–phonon coupling.19 The band structure of MgB2 cal-

culated in several works since the discovery superconductivity is similar to that

of graphite and is formed by by the σ and π zones. The magnesium diboride has

two superconducting gaps, 4 and 7.5 meV, due to the π and σ electron bands. The

two-gap structure was established in a number of experiments,19–25 and two-gap

superconductivity has also discussed by many groups.26–32

In the recent years, great efforts have been devoted to the fabrication of MgB2

nanostructures that could play a crucial role in the field of applied superconductiv-

ity.24 The ideal candidate is one-dimensional (1D) nanostructures including nan-
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Fig. 5. TEM micrograph of 20–100 nm nanoparticles of MgB2.

otubes, nanowires and nanoparticles. As for MgB2, nanoparticles of approximately

40–100 nm in size are available (Fig. 5). For ultrasmall superconducting grains,

the experiments33,34 by Black et al. have also generated much interest in the size

dependence of superconductivity. Properties of ultrasmall superconducting grains

have been theoretically investigated by many groups.35–39 Such ultrasmall grains

were considered by Anderson.40 The standard BCS theory gives a good description

of the phenomenon of superconductivity in large samples. However, as the size of a

superconductor becomes small, the BCS theory fails. For ultrasmall Al grains,33,34

the bulk gap has been discussed in relation to physical properties of ultrasmall

grains such as the parity gap,38 condensation energy,39 electron correlation,36 etc.,

as well as the size-dependence of the level spacing37 of samples. In this letter, we

investigate the properties of two-gap superconductivity in a nano-sized system by

using a two-sublevel model in the case of strong interaction.

We discuss the condensation energy and the parity gap of two-gap supercon-

ductivity in relation to the size-dependence of those properties in the case of two

bulk gaps and the effective pair scattering. In this section, we investigate the prop-

erties of nanosize two-gap superconductivity by using a two-sublevel model in the

framework of the mean-field approximation. A model corresponding to a nanosize

two-gap superconductivity is presented, and the partition function of the nanosize

system is analytically derived by using the path integral approach. A definition of

the critical level spacing of the two-gap superconductivity is also presented, and we

discuss the condensation energy and the parity gap of two-gap superconductivity

in relation to the size dependence of those properties with two bulk gaps and the

effective pair scattering process between two sublevels. In nanosize grains of a su-

perconductor, the quantum level spacing approaches the superconducting gap. In

the case of a two-gap superconductor, we can consider a model with two sublevels

corresponding to two independent bands. In this section, we present a model for

nanosize two-gap superconductivity and an expression for the partition function of

the system.
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In this section, we investigate the properties of nanosize two-gap superconduc-

tivity by using a two-sublevel model in the framework of the mean-field approxima-

tion. A model corresponding to a nanosize two-gap superconductivity is presented,

and the partition function of the nanosize system is analytically derived by using

the path integral approach. A definition of the critical level spacing of the two-gap

superconductivity is also presented, and we discuss the condensation energy and the

parity gap of two-gap superconductivity in relation to the size dependence of those

properties with two bulk gaps and the effective pair scattering process between

two sublevels. In nanosize grains of a superconductor, the quantum level spacing

approaches the superconducting gap. In the case of a two-gap superconductor, we

can consider a model with two sublevels corresponding to two independent bands.

In this section, we present a model for nanosize two-gap superconductivity and an

expression for the partition function of the system.

2.1. Hamiltonian for nanosize grains

We consider a pairing Hamiltonian with two sublevels corresponding to two bands

1 and 2 written as:

H = H0 +Hint , (1)

where

H0 =
∑

j,σ

[ε1j − µ]a†jσajσ +
∑

k,σ

[ε2k − µ]b†kσbkσ , (2)

Hint = −g1
∑

j,j′∈I

a†j↑a
†
j↓aj′↓aj′↑ − g2

∑

k,k′∈J

b†k↑b
†
k↓bk′↓bk′↑

+ g12
∑

j∈I,k∈J

a†j↑a
†
j↓bk↓bk↑ + g12

∑

j∈I,k∈J

b†k↑b
†
k↓aj↓aj↑ . (3)

Here, a†jσ(ajσ) and b†jσ(bj,σ) are the creation (annihilation) operator in sublevels 1

and 2 with spin σ and the energies ε1j and ε2j , respectively, the operators for each

sublevel satisfy the anticommutation relations and the operators between sublevels

are independent, µ is the chemical potential, the second term in Eq. (1) is the

interaction Hamiltonian, g1 and g2 are the effective interaction constant for sublevels

1 and 2, and g12 is an effective interaction constant which corresponds to the pair

scattering process between two bands. The sums of j and k in Eq. (3) are over the

set I of N1I states corresponding to the half-filled band 1 with fixed width 2ω1D

and the set J of N2J states for band 2, respectively.

In this study, we assume that the Debye energies for two sublevels are the same:

ω1D = ω2D = ωD. Within this assumption, N1I and N2J are relatively estimated

by the density of state (DOS) for two bands as N1I/N2J = ρ1/ρ2, where ρ1 and ρ2
are DOS for two bands. The interaction constants g1 and g2 can be written as d1λ1

and d2λ2, respectively. d1 = 2ωD/N1I and d2 = 2ωD/N2J means the mean energy
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level spacing, and λ1 and λ2 are the dimensionless parameters for two sublevels. We

take the intersublevel interaction constant g12 =
√
d1d2λ12. In summary, we obtain

a relation of ρ1/ρ2 = N1I/N2J = d2/d1.

2.2. Path integral approach

It is convenient to introduce a path integral approach for the treatment of fluc-

tuations of the order parameters. This approach gives an exact expression for the

grand partition function of a superconductor.

Z(µ, T ) = Tr exp

[

−H − µN

T

]

, (4)

where T is the temperature and N is the number operator in the grain. The idea

of the path integral approach is to replace the description of a system under study

in terms of electronic operators by an equivalent description in terms of the super-

conducting order parameter.

By the path integral approach, we obtain an expression for the grand partition

function for the Hamiltonian (1):

Z(µ, T ) =

∫

D∆1D∆∗
1D∆2D∆∗

2e
−S[∆1,∆2] . (5)

Here, the action S[∆1,∆2] is defined as:

S[∆1,∆2] = −
∑

j

[

Tr lnG−1
1j − ξ1j

T

]

−
∑

k

[

Tr lnG−1
2k − ξ2k

T

]

+

∫ 1/T

0

dτ
1

g1g2 − g212
[g2|∆1(τ)|2 + g1|∆2(τ)|2

+ g12(∆1(τ)∆2(τ)
∗ +∆1(τ)

∗∆2(τ))] . (6)

∆1 and ∆2 are bulk gaps for sublevels 1 and 2, respectively, ξ1j = ε1j − µ and

ξ2k = ε2k − µ, and the inverse Green’s functions

G−1
1j (τ, τ

′) =

[

− d

dτ
− ξ1jσ

z −∆1(τ)σ
+ −∆∗

1(τ)σ
−

]

δ(τ − τ ′) , (7)

and

G−1
2k (τ, τ

′) =

[

− d

dτ
− ξ2kσ

z −∆2(τ)σ
+ −∆∗

2(τ)σ
−

]

δ(τ − τ ′) , (8)

where σ± = σx ± iσy and σx,y,z are the Pauli matrices. G−1
1 and G−1

2 satisfy

antiperiodic boundary conditions.

In the case of a stronger interaction, ∆1 ≫ d1 and ∆2 ≫ d2, we consider the

mean-field approximation for the order parameters in the path integral approach.
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Substituting the time-independent order parameters into the action (6), we have:

Ω(µ) =
∑

j

(ξ1j − ǫ1j) +
∑

k

(ξ2k − ǫ2k)

+
1

g1g2 − g212
[g2∆

2
1 + g1∆

2
2 + g12(∆

∗
1∆2 +∆1∆

∗
2)] , (9)

where ǫ1j = (ξ21j+∆2
1)

1/2, and ǫ2k = (ξ22k+∆2
2)

1/2. In Eq. (9), the values of ∆1 and

∆2 must be chosen in such a way which minimizes Ω. From the minimization of Ω,

we obtain a coupled gap equation at zero temperature for the two-gap system:

(

∆1

∆2

)

=











g1
∑

j

1

2ǫ1j
−g12

∑

k

1

2ǫ2k

−g12
∑

j

1

2ǫ1j
g2
∑

k

1

2ǫ2k











(

∆1

∆2

)

. (10)

Fom the coupled gap equation, Eq. (10), we formally obtain an expression for the

bulk gap for two-gap superconductivity at zero temperature:

∆̃1 = ω sinh−1

(

1

η1

)

(11)

and

∆̃2 = ω sinh−1

(

1

η2

)

, (12)

where

1

η1
=

λ2 + α±[η1, η2]λ12

λ1λ2 − λ2
12

, (13)

1

η2
=

λ1 + α−1
± [η1, η2]λ12

λ1λ2 − λ2
12

(14)

and

α± [η1, η2] = ±
sinh

(

1

η1

)

sinh

(

1

η2

) . (15)

For the two-band superconductivity, we can consider two cases for the phase of

the gaps: sgn(∆̃1) = sgn(∆̃2), and sgn(∆̃1) = −sgn(∆̃2). For the same phase, α+

is used in Eqs. (13) and (14), and we use α− for the opposite phase. Note that

∆̃1 = −∆̃2 in the limit of strong intersublevel coupling λ12, that is, the opposite

phase. For λ12 = 0, we find the same results for two bulk gaps derived from the

conventional BCS theory for two independent sublevels.
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2.3. Condensation energy

In this section, we discuss properties such as condensation energy, critical level

spacing and parity gap of nanosize two-gap superconductivity by using the partition

function derived in the previous section.

In nanosize superconductivity, the condensation energy can be defined as

EC
N,b(λ) = EG

N,b(0) − EG
N,b(λ) − nλd, where EG

N,b is the ground state energy of

the N -electron system in the interaction band, b is the number of electrons on

single occupied levels and λ and n are the dimensionless coupling parameter and

the number of pair occupied level, respectively. In the case of a nanosize two-band

system, the condensation energy can be written as:

EC
N1,b1;N2,b2(λ1, λ2, λ12) = EG

N1,b1;N2,b2(0, 0, 0)− EG
N1,b1;N2,b2(λ1, λ2, λ12)

−n1λ1d1 − n2λ2d2 , (16)

where EG
N1,b1;N2,b2

(λ1, λ2, λ12) means the ground state energy of (N1+N2)-electron

system. From Eqs. (4) and (9), the condensation energy of the two-sublevel system

can be expressed by the condensation energy of independent single level systems:

EC
N1,b1;N2,b2(λ1, λ2, λ12) = EC

N1,b1(λ1) + EC
N2,b2(λ2)−

λ2
12

λ1λ2 − λ2
12

×
(

∆2
1

d1λ1
+

∆2
2

d2λ2
+

2 (∆∗
1∆2 +∆1∆

∗
2)√

d1d2λ12

)

, (17)

where EC
N1,b1

(λ1) and EC
N2,b2

(λ2) correspond to the condensation energy for the

single band case. In the same phases of ∆1 and ∆2, the condensation energy (17)

decreases, that is, there appears the instability by the coupling constant λ12. On

the other hand, in the opposite phases, the condensation energy becomes larger,

because ∆∗
1∆2 + ∆1∆

∗
2 < 0. We can expect that the condensation energy for two-

gap superconductivity leads to a higher stability, than that of two independent

systems, due to the intersublevel coupling λ12 and the opposite phases.

2.4. Critical level spacing

To discuss the critical level spacing for a two-gap system, we start from the coupled

gap Eq. (10). For the case of the critical level spacing of the two-gap system, we

have:

1 = λ1

∑

j

1

2|ξ̃1j |
+ λ2

∑

k

1

2|ξ̃2k|
− (λ1λ2 − λ2

12)
∑

j

1

2|ξ̃1j |
∑

k

1

2|ξ̃2k|
, (18)

where ξ̃i = ξi/di for sublevel i = 1, 2. For the odd or even cases, Eq. (18) can be

approximately solved by using the digamma function: For the odd case, the critical

level spacing becomes:

d◦1c = ωDe
γ exp

[

− 1

λ

]

, d◦2c =
d2
d1

d◦1c , (19)

1230013-10



September 6, 2012 8:37 WSPC/Guidelines-IJMPB S0217979212300137

Nanoscale Superconductivity

and, for the even case,

de1c = 4ωDe
γ exp

[

− 1

λ

]

, de2c =
d2
d1

de1c . (20)

Here, we use

1

λ
=

1

2x

[

λ1 + λ2 − ax+
√

(λ1 − λ2 − ax)2 + 4λ2
12

]

(21)

with

x = λ1λ2 − λ2
12 , (22)

a = log
d1
d2

. (23)

From these expressions, we find some relations:

de1c = 4d◦1c, de2c = 4d◦2c (24)

and

d◦1/2c ≈
eγ

2
exp

[

1

η1/2
− 1

λ

]

∆̃1/2. (25)

In the case of |λ1 − λ2| ≫ λ12, Eq. (25) can be approximately rewritten as:

d◦1/2c ≈
eγ

2
exp

[

λ2 − λ1 + 2αλ12

λ1λ2 − λ2
12

]

∆̃1/2 . (26)

On the other hand, in the limit of |λ1 − λ2| ≪ λ12, we have:

d◦1/2c ≈
eγ

2
exp

[

(1 + α)λ12

λ1λ2 − λ2
12

]

∆̃1/2 . (27)

For the case of λ12 = 0, Eq. (25) can be rewritten as d◦1/2c ≈ exp[γ]/2 exp[1/λ1 −
1/λ2]∆̃1/2. Therefore, when the coupling constants λ1 and λ2 take the same value,

we have a relation similar to that for a single level system: d◦1/2c ≈ 0.89∆̃1/2. These

results suggest the critical level spacing strongly depend upon λ12 and the difference

between the effective interaction constants for sublevels. The relation in Eq. (24) is

the same relation in the conventional nanosize BCS theory.

2.5. Parity gap

In this subsection, we consider a parity gap in the case of two-gap superconductivity

in ultrasmall grains. In the case of two sublevel spacings, the chemical potential lies

halfway between the highest occupied and the lowest unoccupied levels of a smaller

level spacing in the half-filled case, as shown in Fig. 6(a).

We assume that d1 < d2 and that the numbers of occupied levels corresponding

to each sublevel are n1 and n2, respectively. Then, the total number of electron

becomes N = 2n1 + 2n2. When we consider N = 2n1 + 2n2 + 1, the chemical
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n2

n2-1

µ 

n1

n1-1

n1+1
n2+1
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(a) (b) (c)

µ 

n1

n1-1

n1+1
n2+1

n2

n2-1

µ 

n1

n1-1

n1+1
n2+1

n2

n2-1

n1+2

(d) (e)

n1+2

Fig. 6. Position of the chemical potential relative the electronic energy levels in a two-gap
superconducting grain. Solid and dotted lines mean two sublevels. (a) Half-filled system with
2n1 + 2n2 electrons. (b) 2n1 + 1 + 2n2-electron system. (c) 2(n1 + 1) + 2n2-electron system.
(d) 2(n1 + 1) + 2n2 + 1-electron system. (e) 2(n1 + 1) + 2(n2 + 1)-electron system.

potential lies on the level ε1n1+1, as shown in Fig. 6(b). Figure 6(c) shows the

position of the chemical potential in the case of N = 2n1+2n2+2. The parity gap

of nanosize two-gap superconductivity is written as:

∆1
p = EG

2n1+1+2n2,1 −
1

2
(EG

2n1+2n2,0 + EG
2(n1+1)+2n2,0

) . (28)

From Eq. (9) and for the ground state energy EG
N,b = ΩµN

+ µNN , we obtain:

∆1
p = ∆1 −

d1
4

(

ρ1
ρ2

− 1

)

. (29)

From Figs. 6(c), 6(d) and 6(e), we can define another parity gap:

∆2
p = EG

2(n1+1)+2n2+1,1 −
1

2
(EG

2(n1+1)+2n2,0
+ EG

2(n1+1)+2(n2+1),0) . (30)

From the latter definition of Eq. (30), we have:

∆2
p = ∆2 −

d2
4

(

3ρ2
ρ1

− 1

)

. (31)

The present results suggest two kinds of the dependence of the parity gap on the

level spacing. The parity gap does not depend upon the effective interaction λ12.

The structure around the Fermi level plays an important role of the contribution to
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the size dependence of the parity gap. We have investigated the properties of nano-

size two-gap superconductivity by using a two-sublevel model in the framework of

the mean-field approximation. From the discussion of the condensation energy in

nanosize two-gap superconductivity, the phases of the gaps are very important to

stabilize the superconductivity. In the same phases, the two-gap superconductivity

is instable by the coupling constant λ12. On the other hand, in the opposite phases,

the superconductivity becomes stable. We can expect that, due to the condensa-

tion energy, the two-gap superconductivity becomes more stable than that for two

independent systems due to the intersublevel coupling λ12 and the opposite phases.

We have also discussed the critical level spacing for two-gap superconductivity

in ultrasmall grains. These results suggest that the critical level spacing strongly

depends upon λ12 and the difference between the effective interaction constants for

sublevels. Moreover, the relation between the critical level spacing and the bulk gaps

is modified as compared with the result obtained for ultrasmall superconducting Al

grains.

For the parity gap in two-gap superconductivity, the present results suggest

two kinds of the dependence of the parity gap on the level spacing and that the

structure around the Fermi level plays an important role by contributing to the size

dependence on the parity gap. The parity gap does not depend upon the effective

interaction λ12.

In the case of a cluster system, we have to apply a more accurate approach

beyond the mean-field approximation presented in this study by investigating the

physical properties, and we also have to consider the contribution of the surface

of samples to the level structure around the Fermi level. We will present these

problems in the next section. On the basis of the presented results, we might expect

the possibility of a new multi-gap superconductivity arising in the nanosize region

with a higher critical transition temperature.

In summary, a model corresponding to a nanosize two-gap superconductivity

has been presented, and an expression for the partition function of the nanosize

system has been analytically derived by using the path integral approach. A defi-

nition of the critical level spacing of the two-gap superconductivity has been also

presented, and we discuss the condensation energy and the parity gap of the two-

gap superconductivity in relation to the size dependence of those properties with

two bulk gaps, as well as the effective pair scattering process between two sublevels.

3. Exact Solution for the Superconductivity in Ultrasmall Grain

Many groups have theoretically investigated the physical properties such as

critical level spacing, condensation energy, parity gap, etc. in ultrasmall grains

with the conventional superconductivity.17–23 The question concerning such nano-

size superconducting grains has been discussed by Anderson.2 The standard BCS

theory becomes false, when the level spacing approaches the superconducting gap.

To investigate the properties in such nanosize systems, it is necessary to take a
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more accurate treatment. Braun and von Delft21,22,24 have reintroduced the ex-

act solution to the reduced BCS Hamiltonian developed by Richardson.25–27 It is

noteworthy that the Richardson’s solution is applicable at distributions of single-

electron energy levels. Gladilin et al.23 have investigated the pairing characteristics

such as the condensation energy, spectroscopic gap, parity gap, etc., by using the

Richardson’s exact solution for the reduced BCS Hamiltonian.

The recent discovery of superconductivity of MgB2
28 with Tc = 39 K has also

been much attracted a great interest aimed at the elucidation of its mechanism from

both experimental and theoretical viewpoints. Since this discovery, the possibility of

two-band superconductivity has also been discussed in relation to two gap functions

experimentally and theoretically.

In this section, we investigate the two-band superconductivity in ultrasmall

grains. The Richardson’s exact solution is extended to two-band systems, and a

new coupled equation is derived according to the procedure of Richardson’s works.

The parity gap and the condensation energy of an ultrasmall two-band supercon-

ducting grain are numerically given by solving the coupled equation. We discuss

these properties of ultrasmall grains in relation to the correlation, interband inter-

action and size dependence.

3.1. Exact solution for two-band superconductivity

In this section, we derive an exact solution of the two-band superconductivity for

a reduced BCS Hamiltonian.

3.2. Hamiltonian

We consider a Hamiltonian for two bands 1 and 2 written as:

H = H1 +H2 +Hint , (32)

where

H1 =
∑

jσ

ε1ja
†
jσajσ − g1

∑

jk

a†j↑a
†
j↓ak↓ak↑ , (33)

H2 =
∑

jσ

ε2jb
†
jσbjσ − g2

∑

jk

b†j↑b
†
j↓bk↓bk↑ , (34)

Hint = g12
∑

jk

a†j↑a
†
j↓bk↓bk↑ + g12

∑

jk

b†j↑b
†
j↓ak↓ak↑ . (35)

The first and second terms of Eq. (32) correspond to the reduced BCS Hamiltonian

for bands 1 and 2, respectively. The third term means a coupling between them

and corresponds to the pair scattering process between these two bands (Fig. 7).

a†jσ (ajσ) and b†jσ (bjσ) are the creation (annihilation) operator in bands 1 and 2

with spin σ and the single-particle levels ε1j and ε2j , respectively. The sums of j
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Fig. 7. Two-band system. The dotted line means the chemical potential; εnj is the single-particle
energy for band n and level j; −g1 and −g2 are the intraband pair interaction coupling constants;
g12 are the interband pair interaction coupling constant.

and k are taken over a set of N1 states for band 1 with fixed width 2~ω1D and a

set of N2 states for band 2 with fixed width 2~ω2D, respectively.

In this study, we assume that the Debye energies for two bands coincide with

each other, i.e.,

ω1D = ω2D = ωD . (36)

Within this assumption, N1 and N2 are relatively estimated by the DOS for two

bands as:

N1

N2
=

ρ1
ρ2

, (37)

where ρ1 and ρ2 are DOS for two bands, respectively. The interaction constants g1
and g2 can be written as:

g1 = d1λ1, g2 = d2λ2 , (38)

where d1 and d2 are the mean single-particle level spacing,

d1 =
2~ωD
N1 − 1

, d2 =
2~ωD
N2 − 1

, (39)

and λ1 and λ2 are the dimensionality interaction parameters for two bands. We

define the interband interaction constant as:

g12 =
√

d1d2λ12 . (40)

In summary, we obtain the relation

ρ1
ρ2

≈ N1 − 1

N2 − 1
=

d2
d1

. (41)
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The system we are considering consists of two half-filled bands, each of which

has equally spaced Nn single-particle levels and Mn (= Nn/2) doubly occupied pair

levels (n = 1, 2). We take the single-particle level spacing as our energy unity. Thus,

the single-particle spectrum is given by:

εnj = dnj − ωD, j = 1, 2, . . . , Nn (n = 1, 2) . (42)

Richardson has obtained his solution within the single-band model for an arbi-

trary set of single-particle levels. For simplicity, we assume that there are no singly

occupied single-particle levels. As can be seen from Eqs. (34)–(35), these levels are

decoupled from the rest of the system. They are said to be blocked and contribute

with their single-particle energies to the total energy. The above simplification im-

plies that every single-particle level j is either empty (i.e., |vac〉), or occupied by a

pair of electrons (i.e., a†j↑a
†
j↓|vac〉 and b†j↑b

†
j↓|vac〉). These are called as the unblocked

level.

3.3. Exact solution

In order to extend Richardson’s solution to a two-band system, we define two kinds

of hard-core boson operators as:

cj = aj↓aj↑, c†j = a†j↑a
†
j↓ , (43)

dj = bj↓bj↑, d†j = b†j↑b
†
j↓ , (44)

which satisfy the commutation relations,

c†2j = 0, [cj , c
†
k] = δjk(1− 2c†jcj), [c†jcj , c

†
k] = δjkc

†
j , (45)

d†2j = 0, [dj , d
†
k] = δjk(1− 2d†jdj), [d†jdj , d

†
k] = δjkd

†
j , (46)

which reflects the Pauli principle for the fermions they constructed from.

Hamiltonian Eq. (32) for the unblocked levels can then be written as:

HU = 2

N1
∑

j

ε1jc
†
jcj − g1

N1
∑

jk

c†jck + 2

N2
∑

j

ε2jd
†
jdj − g2

N2
∑

jk

d†jdk

+ g12

N1
∑

j

N2
∑

k

c†jdk + g12

N2
∑

j

N1
∑

k

d†jck . (47)

We find the eigenstates |M1;M2〉 of this Hamiltonian with M1 + M2 pairs in the

form

HU |M1;M2〉U = E(M1;M2)|M1;M2〉U

=

(

M1
∑

J=1

E1J +

M2
∑

K=1

E2K

)

|M1;M2〉U , (48)
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where E(M1;M2) is the eigenvalue and

|M1;M2〉U =

M1
∏

J=1

C†
J

M2
∏

K=1

D†
K |vac〉 , (49)

and

C†
J =

N1
∑

j

c†j
2ε1j − E1J

, D†
J =

N2
∑

j

d†j
2ε2j − E2J

. (50)

Now, we define C†
0 and D†

0 as:

C†
0 =

N1
∑

j

c†j , D†
0 =

N2
∑

j

d†j . (51)

Then we can rewrite Eq. (47) as:

HU = 2

N1
∑

j

ε1jc
†
jcj − g1C

†
0C0 + 2

N2
∑

j

ε2jd
†
jdj − g2D

†
0D0

+ g12C
†
0D0 + g12D

†
0C0 . (52)

The commutation relations for new operators are given as:

[c†jcj , C
†
J ] =

c†j
2ε1j − E1J

, [d†jdj , D
†
J ] =

d†j
2ε2j − E2J

, (53)

[C0, C
†
J ] =

N1
∑

j

1− c†jcj

2ε1j − E1J
, [D0, D

†
J ] =

N2
∑

j

1− d†jdj

2ε2j − E2J
, (54)

[HU , C
†
J ] = E1JC

†
J + C†

0 + g1C
†
0

N1
∑

j

1− c†jcj

2ε1j − E1J
+ g12D

†
0

N1
∑

j

1− c†jcj

2ε1j − E1J
(55)

and

[HU , D
†
J ] = E2JD

†
J +D†

0 + g1D
†
0

N2
∑

j

1− d†jdj

2ε2j − E2J
+ g12C

†
0

N2
∑

j

1− d†jdj

2ε2j − E2J
. (56)

Using the above-presented commutation relations, we find:

HU |M1;M2〉U =

(

M1
∑

J=1

E1J +

M2
∑

K=1

E2K

)

|M1;M2〉U

+C†
0

M1
∑

J=1



1−
N1
∑

j

g1
2ε1j − E1J

+

M1
∑

J′ 6=J

2g1
E1J′ − E1J



 |M1(J);M2〉U
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+D†
0

M1
∑

J=1





N1
∑

j

g12
2ε1j − E1J

−
M1
∑

J′ 6=J

2g12
E1J′ − E1J



 |M1(J);M2〉U

+C†
0

M2
∑

K=1





N2
∑

j

g12
2ε2j − E2K

−
M2
∑

K′ 6=K

2g12
E2K′ − E2K



 |M1;M2(K)〉U

+D†
0

M2
∑

K=1



1−
N2
∑

j

g2
2ε2j − E2K

+

M2
∑

K′ 6=K

2g2
E2K′ − E2K





× |M1;M2(K)〉U , (57)

where

|M1(L);M2〉U =

L−1
∏

J=1

C†
J

M1
∏

J′=L+1

C†
J′

M2
∏

K=1

D†
K |vac〉 , (58)

|M1;M2(L)〉U =

M1
∏

J=1

C†
J

L−1
∏

K=1

D†
K

M2
∏

K′=L+1

D†
K′ |vac〉 . (59)

Comparing Eq. (57) with Eq. (48), we obtain, for arbitrary J and K,

(

C†
0 D†

0

)

(

1 + g1A1J −g12A2K

−g12A1J 1 + g2A2K

)(

|M1(J);M2〉U
|M1;M2(K)〉U

)

= 0 , (60)

where

AnL = −
Nn
∑

j

1

2εnj − EnL
+

Mn
∑

L′ 6=L

2

EnL′ − EnL
. (61)

A nontrivial solution of Eq. (60) is derived from the determinantal equation

FJK = (1 + g1A1J )(1 + g2A2K)− g212A1JA2K = 0 . (62)

This constitutes a set of M1 + M2 coupled equations for M1 + M2 parameters

E1J and E2K (J = 1, 2, . . . ,M1;K = 1, 2, . . . ,M2), which may be thought of as

self-consistently determined pair energies. Equation (62) is the exact eigenvalue

equation for a two-band superconducting system and can be regarded as a gener-

alization of the Richardson’s original eigenvalue equation.

3.4. Preprocessing for numerical calculations

To remove the divergences from the second term of AnL in Eq. (61), we make

changes of the energy variables:

En2λ = ξnλ + iηnλ ,

En2λ−1 = ξnλ − iηnλ ,

λ = 1, 2, . . . ,Mn/2 ,

(63)
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where we assume that the number of pairs is even. Since the complex pair energies

appear in complex conjugate pairs, the total energy is kept in real.

A further transformation is necessary in order to remove the divergences from

the first term of AnL. We define new variables xnλ and ynλ as:

ξnλ = εn2λ + εn2λ−1 + dnxnλ (xnλ ≤ 0) (64)

and

η2nλ = −(∆ε2n2λ − d2nx
2
nλ)ynλ (ynλ ≥ 0) , (65)

where

∆εn2λ = εn2λ − εn2λ−1 . (66)

Considering the sign of ynλ, we can express ηnλ as:

ηnλ = |ηnλ|e−iφnλ ,

φnλ =

{

0 for ∆ε2n2λ − d2nx
2
nλ ≤ 0 ,

π/2 for ∆ε2n2λ − d2nx
2
nλ > 0 .

(67)

Then we can rewrite FJK , by using the new variables, and define the result as Fαβ .

We extract the real and imaginary parts of Fαβ as:

F+
αβ =

1

2
(Fαβ + F ∗

αβ) = 1 + g1R1α + g2R2β + (g1g2 − g212)R1αR2β

− (g1g2 − g212)I1αI2β cos(φ1α + φ2β)

−{g1 + (g1g2 − g212)R2β}I1α sinφ1α

−{g2 + (g1g2 − g212)R1α}I2β sinφ2β , (68)

F−
αβ =

1

2i
(Fαβ − F ∗

αβ) = −(g1g2 − g212)I1αI2β sin(φ1α + φ2β)

+ {g1 + (g1g2 − g212)R2β}I1α cosφ1α

+ {g2 + (g1g2 − g212)R1α}I2β cosφ2β , (69)

where

Rnλ = − 2dnxnλ(1 + ynλ)

(1− ynλ)2∆ε2n2λ − (1 + ynλ)2d2nx
2
nλ

+4

Mn
∑

µ6=λ

ξnµλ(ξ
2
nµλ + η2nµ + η2nλ)

(ξ2nµλ + η2nµ + η2nλ)
2 − 4η2nµη

2
nλ

−
Nn
∑

j 6=2λ−1,2λ

2εnλ − ξnλ
(2εnλ − ξnλ)2 + η2nλ

, (70)
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Fig. 8. Single-particle levels near the Fermi level in a the case of two-band superconductivity. The

dotted lines mean the chemical potential. The left and right bands are band 1 and 2, respectively.
d1 and d2 are the mean level spacings. (a) 2M1 +2M2 electron system, where Mn is a number of
pair levels, (b) (2M1 + 1) + 2M2 electron system, (c) (2M1 + 2) + 2M2 electron system.

Inλ =

{

1− y2nλ
(1− ynλ)2∆ε2n2λ − (1 + ynλ)2d2nx

2
nλ

− 4ynλ

Mn
∑

µ6=λ

ξ2nµλ − η2nµ + η2nλ
(

ξ2nµλ + η2nµ + η2nλ

)2

− 4η2nµη
2
nλ

+ ynλ

Nn
∑

n6=2λ−1,2λ

1

(2εnλ − ξnλ)2 + η2nλ

}

×
√

∣

∣

∣

∣

∆ε2n2λ − d2nx
2
nλ

ynλ

∣

∣

∣

∣

(71)

and

ξnµλ = ξnµ − ξnλ . (72)

Therefore, for an arbitrary combination of α and β, we must solve the following

equations:

F+
αβ = 0 ,

F−
αβ = 0 (α = 1, 2, . . . ,M1/2; β = 1, 2, . . . ,M2/2) . (73)

3.5. Results and discussion

We now apply the exact solution for a two-band system to discuss the properties of

the two-band superconductivity in ultrasmall grains. The single-particle level pat-

terns of the (2M1+m)+2M2 electron system (m = 0, 1 and 2) under consideration

are represented in Figs. 8(a), (b) and (c), respectively. The dotted lines mean the

chemical potential, and d1 and d2 (d1 < d2) are the mean level spacings. As seen

these figures, the additional electrons first occupy band 1 and then band 2.
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Fig. 9. Typical behavior of pair energy levels of two bands for the ground state. Parameters
used in calculation are N1 = 12, N2 = 8, M1 = 6, M2 = 4, ~ωD = 50, 0 ≤ λ1 = λ2 ≤ 1.5 and
0 ≤ λ12 ≤ 0.3. Solid and broken lines correspond to the pair energy levels of band 1 and band 2,
respectively.

Numerical calculations are carried out under the condition that N1 : N2 = 3 : 2,

~ωD = 50 and λ1 = λ2 = λ.

3.6. Pair energy level

By minimizing the sum of squares of Eqs.(68) and (69):

F =

M1/2
∑

α=1

M2/2
∑

β=1

(F+2
αβ + F−2

αβ ) (74)

for various interaction parameters, we obtain a behavior of pair energy levels EnJ
of two bands as shown in Fig. 9, in which the solid and broken lines correspond to

the pair energy levels of band 1 and band 2, respectively. Parameters used in this

calculation are N1 = 12, N2 = 8, M1 = 6, M2 = 4, 0 ≤ λ ≤ 1.0 and 0 ≤ λ12 ≤ 0.2.

As seen in the figures, band 2 condenses into degenerate levels, but the band 1

does not. In general, we can expect that the single-particle levels in a band, whose

mean level spacing d is larger than that of the other band, degenerate faster. The

behavior of the condensing band is qualitatively the same as that in the case of

calculations for the single band.22 The co-existence of the normal band and the

condensed one may be reflected in the opposite phase of the gaps of these bands.12

3.7. Condensation energy

The condensation energy of band n for the (2M1 +m) + 2M2 electron system can

be defined as:

EC
n (2M1 +m, 2M2) = En(2M1 +m, 2M2) +

(

Mn +
m

2

)

gn

−E0
n(2M1 +m, 2M2) , (75)
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(a) (b)

Fig. 10. Condensation energy. Parameters used in calculation are ~ωD = 50, and λ1 =
λ2 = 0.5. Values are normalized by the bulk gap, ∆1 = ωD sinh−1(λ2/(λ1λ2 − λ2

12
)) or

∆2 = ωD sinh−1(λ1/(λ1λ2 − λ2

12
)). The solid and broken lines correspond to the condensation

energy for bands 1 and 2, respectively. Lines plotted by squares, by triangles, and by circles are
for the 2M1+2M2 electron system, for (2M1+1)+2M2 electron system and for (2M1+2)+2M2

electron system, respectively. (a) The condensation energy for the interband coupling parameter
λ12 = 0.01. (b) The condensation energy for λ12 = 0.1.

where En(2M1 + m, 2M2) and E0
n(2M1 + m, 2M2) are the ground state energies

and the sum of the single-particle energies, respectively.

We calculate the condensation energies and show them in Figs. 10(a) and 10(b).

The parameters used in this calculation are λ = 0.5 and λ12 = 0.01 for (a), λ12 = 0.1

for (b). Values are normalized by the bulk gap, ∆ = ωD sinh−1(λ/(λ2 − λ2
12)).

The solid and broken lines correspond to the condensation energy for bands 1 and

2, respectively. Lines plotted by squares, by triangles and by circles are for the

2M1+2M2 electron system, (2M1+1)+2M2 electron system and (2M1+2)+2M2

electron system, respectively.

As seen in the figures, we can understand that band 2 condenses, but band 1

does not because of the sign of values. This difference of signs may also be reflected

in the opposite phases of the gaps of these bands. The behavior of the results for

the condensed band (band 2) is qualitatively the same as in the case of the single-

band calculations. The condensation energy of band 2 for the (2M1 + 2) + 2M2

electron system is, however, different from the others. We can also see that the

condensation energy is affected by the interband interaction λ12. This is mentioned

in our previous work.12

3.8. Parity gap

The parity gap of band n is defined as:

∆p
n = En(2M1 + 1, 2M2)

− 1

2
{En(2M1, 2M2) + En(2M1 + 2, 2M2)} , (76)
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Fig. 11. Parity gap. Parameters used in calculation are ~ωD = 50, and λ1 = λ2 = 0.5. The solid
and broken lines correspond to the parity gap for bands 1 and 2, respectively. Lines plotted by
triangles and by squares are for the interband coupling parameter λ12 = 0.01 and for λ12 = 0.1,
respectively. Values are normalized by the bulk gap.

which was introduced by Matveev and Larkin and characterizes the difference of

even–odd ground state energies.20

We have also calculated the parity gaps shown in Fig. 11. The solid and broken

lines correspond to the parity gap for bands 1 and 2, respectively. Lines plotted by

triangles and by squares are for the interband coupling parameter λ12 = 0.01 and

for λ12 = 0.1, respectively. Other parameters used in this calculation are the same

as for the calculation of the condensation energy. Values are normalized by the bulk

gap.

For the condensed band, we obtain qualitatively the same result as that in the

case of the single-band calculations, i.e., there is a minimal point and a tendency

toward 1 for d → 0. The mean level spacing giving the minimal point is, however,

much less than that for the case of calculations for the single band. The parity gap

is almost independent of the interband interaction λ12. This is also mentioned in

our previous work.12

We have extended the Richardson’s exact solution to the two-band system and

have derived a new coupled equation. To investigate the properties of the two-band

superconductivity, we have solved the equation numerically and have determined

the behavior of pair energy levels, the condensation energy and the parity gap.

The band, whose mean level spacing is larger than that of the other band, degen-

erates and condenses faster. The behavior of the condensing band is qualitatively

the same as that for the case of calculations for the single band. The co-existence
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of the normal band and the condensed one may be reflected in the opposite phases

of the gaps of these bands. This phase character appears in every of the results of

numerical calculations. Therefore, the phase of a gap is important to stabilize the

two-band superconductivity.

We have also calculated the condensation energy and the parity gap for two-band

superconductivity. The results suggest that the interband interaction λ12 affects the

condensation energy, but not the parity gap.

In summary, the expression of Richardson’s exact solution for two-band super-

conductivity has been presented, by solving numerically a new coupled equation.

Then, the behaviors of pair energy levels, the condensation energy and the parity

gap have been determined. The results for the condensed band is almost qualita-

tively the same as those for the single band calculation and the co-existence of the

normal band and the condensed one may be originated from the opposite phases of

the gaps of these bands.

4. Kondo Effect Coupled to Superconductivity in Ultrasmall

Grains

The Kondo effect has attracted a great interest, while considering the properties

of semiconductor quantum dots. The Kondo effect can be understood as the mag-

netic exchange interaction between a localized impurity spin and free conduction

electrons.29 To minimize the exchange energy, the conduction electrons tend to

screen the spin of the magnetic impurity and the ensemble forms a spin singlet. In

a quantum dot, some exotic properties of the Kondo effect have been observed.30,31

Recently, Sasaki et al. have found a significant Kondo effect in quantum dots with

an even number of electrons.32 The spacing of discrete levels in such quantum dots

is comparable with the strength of the electron–electron Coulomb interaction. The

Kondo effect in multilevel quantum dots has been investigated theoretically by sev-

eral groups.33–35 They have shown that the contribution from many levels enhances

the Kondo effect in normal metals. There are some investigations on the Kondo

effect in quantum dots revealing ferromagnetism,36 noncollinear magnetism,37 su-

perconductivity38 and so on.39,40

Properties of ultrasmall superconducting grains have been also theoretically

investigated by many groups.15–23,41 Black et al. have revealed the presence of

a parity-dependent spectroscopic gap in the tunneling spectra of nanosize Al

grains.15,16 For such ultrasmall superconducting grains, the bulk gap has been dis-

cussed in relation to physical properties such as the parity gap,20 condensation

energy21 and electron correlation22 with the size dependence of the level spacing of

samples.23 In the previous works,12 we have also discussed physical properties such

as condensation energy, parity gap and electron correlation of two-gap supercon-

ductivity in relation to the size dependence and the effective pair scattering process.

The possibility of new two-gap superconductivity has been also discussed by many

groups.42–51

1230013-24



September 6, 2012 8:37 WSPC/Guidelines-IJMPB S0217979212300137

Nanoscale Superconductivity

In a standard s-wave superconductor, the electrons form pairs with antialigned

spins and are in a singlet state as well. When the superconductivity and the Kondo

effect present simultaneously, the Kondo effect and the superconductivity are usu-

ally expected to be competing physical phenomena. The local magnetic moments

from the impurities tend to align the spins of the electron pairs in the superconduc-

tor, which often results in a strongly reduced transition temperature. Buitelaar et al.

have experimentally investigated the Kondo effect in a carbon nanotube quantum

dot coupled to superconducting Au/Al leads.38 They have found that the super-

conductivity of the leads does not destroy the Kondo correlations in the quantum

dot at the Kondo temperature. A more subtle interplay has been proposed for ex-

otic and not well-understood materials such as heavy-fermion superconductors, in

which both effects might actually coexist.52

In this section, we investigate the Kondo effect and the superconductivity in ul-

trasmall grains by using a model which consists of the sd and reduced BCS Hamil-

tonians with the introduction of a pseudofermion. The mean-field approximation

for the model is introduced and we calculate physical properties of the critical level

spacing and the condensation energy. These physical properties are discussed in

relation to the coexistence of both the superconductivity and the Kondo regime.

Finally, we derive the exact equation for the Kondo regime in a nanosystem and

discuss the condensation energy from the viewpoint of the correlation energy.

4.1. Kondo regime coupled to superconductivity

In nanosize superconducting grains, the quantum level spacing approaches the su-

perconducting gap. It is necessary to treat the discretized energy levels of a small-

sized system. For ultrasmall superconducting grains, we can consider the pairing-

force Hamiltonian to describe the electronic structure of the system27 and can

determine the critical level spacing in the case where the superconducting gap

function vanishes at a quantum level spacing.23 In this section, we present a model

for a system in the Kondo regime coupled to the superconductivity and discuss the

physical properties such as critical level spacing and condensation energy by using

the mean-field approximation in relation to the gap function, spin singlet order as

the Kondo effect, coexistence and so on.

4.2. Model

We consider a model coupled to the superconductivity for quantum dots to inves-

tigate the Kondo effect in normal metals, which can be expressed by the effective

low-energy Hamiltonian obtained by the Schrieffer–Wolff transformation:53

H = H0 +H1 +H2 , (77)

where

H0 =
∑

k,σ

εka
†
kσakσ +

∑

σ

Eσd
†
σdσ , (78)
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H1 = J
∑

k,k′

[S+a
†
k′↓ak↑ + S−a

†
k′↑ak↓ + Sz(a

†
k′↑ak↑ − a†k′↓ak↓)] , (79)

H2 = −g
∑

k,k′

a†k↑a
†
k↓ak′↓ak′↑ . (80)

a†kσ (akσ) and d†σ (dσ) are the creation (annihilation) operator corresponding to

conduction electrons and the effective magnetic particle as an impurity, respectively.

In this study, we assume the magnetic particle is a fermion with S = 1/2 for

simplicity. E means an extraction energy given by E↑,↓ = −E0 ± Ez included

the Zeeman effect. The second term in Eq. (77) means the interaction between

conduction electrons and the spin in a quantum dot. S is the spin operator as

S+ = d†↑d↓, S− = d†↓d↑ and Sz = (d†↑d↑−d†↓d↓)/2. The third term corresponds to the

interaction between conduction electrons included in the pairing force Hamiltonian.

Here, we introduce a pseudofermion for the magnetic particle operator54 as:

d†↑ = f↓, d↑ = f †
↓ ,

d†↓ = −f↑, d↓ = −f †
↑ .

(81)

For this transformation, we have the condition:

f †
↑f↑ + f †

↓f↓ = 1 , (82)

and we have |σ〉 = f †
σ|0〉. The spin operator S can be presented as S+ = f †

↑f↓,

S− = f †
↓f↑ and Sz = (f †

↑f↑ − f †
↓f↓)/2. The Hamiltonian can be rewritten as:

H0 =
∑

k,σ

ε̃kc
†
kσckσ +

∑

σ

Ef †
σfσ , (83)

H1 = J
∑

k,k′,σ,σ′

f †
σfσ′c†k′σ′ckσ , (84)

H2 = −g
∑

k,k′

c†k↑c
†
k↓ck′↓ck′↑ , (85)

where ckσ =
∑

i Uikaiσ with ε̃k =
∑

i,j U
†
ki[εiδij−J/2]Ujk. For the sake of simplicity,

we only focus on Ez = 0 without an external magnetic field: E = E0.

4.3. Mean-field approximation

In this section, we introduce the mean-field approximation for the present Hamil-

tonian (77). Eto et al. have presented the mean-field approximation for the Kondo

effect in quantum dots.55

In the mean-field approximation, we can introduce the spin-singlet order

parameter

Ξ =
1√
2

∑

k,σ

〈f †
σckσ〉 . (86)
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This order parameter describes the spin couplings between the dot states and

conduction electrons. The superconducting gap function can be expressed as:

∆ =
∑

k

〈ck↓ck↑〉 . (87)

Using these order parameters in Eqs. (84) and (85), we obtain the mean-field

Hamiltonian

HMF =
∑

k,σ

ε̃kc
†
kσckσ +

∑

σ

Ẽf †
σfσ +

√
2J
∑

k,σ

[Ξfσc
†
kσ + Ξ∗ckσf

†
σ]

− g
∑

k

[∆∗ck↓ck↑ +∆c†k↑c
†
k↓] . (88)

Constraint (82) is taken into account by the second term with a Lagrange multiplier

λ. In this study, we assume a constant DOS with the energy region of the Debye

energy and the coupling constants can be expressed as J = dJ̃ and g = dλ.

4.4. Critical level spacing in the Kondo effect

By minimizing the expectation value of HMF in Eq. (88), the order parameters

can be determined self-consistently. First, we show the Kondo effect without the

pairing force part (g = 0) in the framework of the mean-field approximation. Next,

the Kondo effect in the presence of the superconductivity is discussed in relation to

the critical level spacing and the condensation energy. Finally, we derive the exact

equation for the Kondo effect in ultrasmall grains coupled to normal metals and

discuss properties such as the condensation energy in relation to Richardson’s exact

equation for the superconductivity.

For ultrasmall superconducting grains, the critical level spacing dBCS
c can be

expressed as dBCS
c = 4ωDe

γ exp(−1/λ) for even number of electrons, where ωD
means the Debye energy. This result suggests that the gap function of a nanosize

system with the level spacing d vanishes, when the coupling parameter λc is less

than the value (ln 4ωD/d+γ)−1. The bulk gap function ∆c with λc can be expressed

as ∆c = ωDsh
−1(1/λc).

Figure 12(a) shows the gap function of a nanosize system in the framework of

the standard BCS theory. We can find the region where the gap function vanishes,

when the coupling becomes less than λc. This means the level spacing is larger than

the gap function in this region.

Here, we drive the critical level spacing for only the Kondo regime (λ = 0). The

equation determining the singlet order parameter can be expressed as:

Ξ =
∑

k

Ξ(ξk − x)

(ξk − x)2 + Ξ2
, (89)

where ξk = ε̃k − µ, x = [ε̃k + Ẽ ±
√

(ε̃k − Ẽ)2 + 4Ξ2]]/2 and µ is the chemical

potential. For the case of the critical level spacing, the solution shows that the
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Fig. 12. Gap function and spin singlet order: (a) the gap function. The gap function vanishes in
the region of λ values less than λc. (b) Spin singlet order parameter. In the case of J̃ < J̃c, the
singlet order vanishes. The system consists of eight energy levels and eight electrons with the level
spacing d = 1.0 and ωD = 1.0.

spin singlet order parameter vanishes. From Eq. (89), we can find the critical level

spacing dKondo
c for the Kondo regime.

dKondo
c = 4ωDe

γ exp

[

− 1

2
√
2J̃

]

. (90)

When the coupling parameter J̃ is smaller than J̃c = [2
√
2(ln(4ωD/d) + γ)]−1, the

spin singlet order parameter vanishes.

Figure 12(b) presents the spin singlet order parameter given by Eq. (86) in the

case g = 0. In the region of J̃ < J̃c, the order parameter vanishes. This result

suggests the critical level spacing in the Kondo effect.

4.5. Kondo effect coupled to the superconductivity

Here, we consider a simple system which consists of eight energy levels and eight

electrons and investigate the critical level spacing and the condensation energy of

the coupled system between the superconductivity and the Kondo regime in the

framework of the mean-field approximation of Eq. (88).

Figure 13(a) shows the spin singlet order parameter and the gap function for

several cases. We can find the critical level spacings for the gap function and for the

spin singlet order parameter. When λ < λc and J̃ > J̃c, we can find only the spin

singlet order parameters. In the region of λ/λc from 1.4 to 1.7 with J̃/J̃c = 0.189,

we can find the coexistence of both the gap function and the spin singlet order

parameter. For λ/λc larger than 1.7, only the gap function still exists and the spin

singlet order parameter vanishes. At J̃/J̃c = 0.284, we can find the coexistence

in the region λ/λc = 1.7 − 2.3. These results suggest that strong local magnetic
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Fig. 13. Physical properties in a coupled system: (a) Gap function and spin singlet order param-
eter. (b) Condensation energy. J̃/J̃c = 0, 0.94741, 1.8948 and 2.8422. Other parameters are the
same.

moments from the impurities make the transition temperature for superconductivity

to be reduced. However, the weak couplings λ of the superconductivity do not

destroy the spin singlet order parameter at all. These results are in good agreement

with the experimental results.38 We can find that there is the coexistence region

for both the superconductivity and the Kondo regime.

Figure 13(b) shows the condensation energy for several λ and J̃ values. We have

found that the condensation energy of the coupled system between the supercon-

ductivity and the Kondo regime becomes lower than that for the pure supercon-

ductivity. In the coexistence region, the highest value of the condensation energy

appears in all cases.

4.6. Exact solution for the Kondo regime

The standard BCS theory gives a good description of the phenomenon of super-

conductivity in large samples. However, when the size of a superconductor becomes

small, the BCS theory fails. To investigate the physical properties such as the con-

densation energy, parity gap, etc., it is necessary to make a more accurate treatment.

For the superconductivity in ultrasmall grains, the exact solution to the reduced

BCS Hamiltonian presented by Richardson27 has been applied to investigate the

above-mentioned physical properties.17

By using the wavefunction describing all pair electron excitations, we can derive

the exact solution for the pairing force (reduced) Hamiltonian

2−
N
∑

k=1

λ

ε̃k − Ei
+

n
∑

l=1,l 6=i

2λ

El − Ei
= 0 , (91)
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Fig. 14. Exact solution for the superconductivity: (a) Condensation energy of the exact solution
and that obtained in the mean-field approximation (b) Pairing energy level with energy level
obtained in the mean-field approximation. 8 energy levels, 8 electrons, d = 1.0, ωD = 4.0.

where N and n are the number of orbitals and the number of the occupied orbitals,

respectively and Ei corresponds to the exact orbital. Figure 14 shows the conden-

sation energy and the pairing energy level for the nanosize superconductivity. Note

that the physical properties obtained in the mean-field approximation give a good

description for the high DOS (d → ∞). We have found the different behavior of the

condensation energy from that obtained in the mean-field approximation, as shown

in Fig. 14(a). Figure 14(b) presents the qualitative behavior of the pairing energy

level in the ground state. At λ about 1.6, above two energy levels in Fig. 14(b)

are completely paired. The pairing behavior has been already reported by many

groups.27,56

Let us derive the exact equation for the Kondo regime in ultrasmall grains.

We can consider the Hamiltonian H = H0 +H1 in Eq. (77). We introduce a cre-

ation operator describing all excited states at the spin singlet coupling between a

conduction electron and a pseudofermion:

B†
j =

∑

k,σ

c†kσfσ
ε̃k − Ej

, (92)

where Ej means the exact eigenenergies in the Kondo regime. The exact eigenstate

|Ψn〉 for the Kondo regime can be written as |Ψn〉 = Πnν=1B
†
ν |0〉. Other electrons,

which are not related to the spin singlet order, contribute Esingle =
∑n

k=1 ε̃k to the

eigenenergy. The ground state energy EGS can be written as EGS =
∑n

k=1[Ek+ ε̃k].

By operating the Hamiltonian to the exact eigenstate, we obtain the condition:

1 +

N
∑

k=1

J̃

ε̃k − Ej
= 0 . (93)
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Fig. 15. Condensation energy for the Kondo regime: all parameters used in the system are as
follows: eight energy levels, eight electrons, d = 1.0 and ωD = 4.0.

This equation gives the exact solution for the Kondo regime. Note that the creation

operator (92) might be a true boson one as compared with the case of the reduced

BCS model.

Figure 15 shows the condensation energy of the exact solution in the Kondo

regime with that obtained in the mean-field approximation. We can find the dif-

ferent behavior of the condensation energy from that obtained in the mean-field

approximation. However, the behavior is similar to that in the case of the super-

conductivity in nanosize systems.

We have investigated properties of the Kondo regime coupled to the super-

conductivity in ultrasmall grains by using the mean-field approximation. In the

framework of the mean-field approximation, we have found the critical level spac-

ing for the Kondo regime. The result suggests that the Kondo effect vanishes, when

the level spacing becomes larger than the critical level spacing.

We have calculated physical properties of the critical level spacing and the con-

densation energy of the coupled system by using the mean-field approximation.

From the results, we have found that strong local magnetic moments from the

impurities make the transition temperature for superconductivity to be reduced.

However, weak couplings λ of the superconductivity do not destroy the spin singlet

order parameter at all. These results are in good agreement with the experimental

results.38 We have found that there is the coexistence region for both the super-

conductivity and the Kondo regime.

Finally, we have derived the exact equation for the Kondo regime in a nanosys-

tem, which was not an easy task and have discussed the condensation energy from

the viewpoint of energy levels. The further study of the properties in the Kondo

regime with the use of the exact equation will be presented elsewhere.
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In summary, we have investigated the Kondo effect and the superconductiv-

ity in ultrasmall grains by using a model which involves the sd and reduced BCS

Hamiltonians with the introduction of a pseudofermion. The mean-field approxima-

tion for the model have been introduced, and we have calculated physical properties

of the critical level spacing and the condensation energy. These physical properties

have been discussed in relation to the coexistence of both the superconductivity

and the Kondo regime. Finally, we have derived the exact equation for the Kondo

regime in a nanosystem and discuss the condensation energy from the viewpoint of

energy levels.

5. Interaction of Nanoscale Ferromagnetic Granules in

Superconductor

Recent experiments have fabricated structured arrays of ferromagnetic nanoparti-

cles in proximity to a bulk superconductor. We consider the theory of interactions

between two nanoscale ferromagnetic particles embedded in a superconductor. In

the London limit approximation, we will show that the interactions between fer-

romagnetic particles can lead to either parallel or antiparallel spin alignment. The

crossover between these is dependent on the ratio of the interparticle spacing and

the London penetration depth. We show that a phase transition between spin ori-

entations can occur, as the temperature is varied. Finally, we comment on the

extension of these results to arrays of nanoparticles in different geometries. We

show that a phase transition between spin orientations can occur under variation

of the temperature. Finally, we comment on the extension of these results to arrays

of nanoparticles in different geometries.

Magnetism and superconductivity are two competing collective ordered states

in metals. In the case of ferromagnetism, the exchange interactions lead to the

parallel alignment of electronic spins, while electron–phonon interactions in the BCS

superconductivity lead to the spin singlet pairing of electrons. Clearly, these two

types of order are generally mutually incompatible. In bulk systems, the frustration

between the electron singlet pairing and the spin ordering is resolved by the FFLO

(Fulde–Ferrell,57 Larkin–Ovchinnikov58) state. However, this has proved elusively

experimentally, and few examples are known. In particular the FFLO state appears

to be highly sensitive to disorder.

In recent years, however, there has been observed a great increase of the inter-

est in the interactions between ferromagnetism and superconductivity in artificially

structured systems. Advances in nanotechnology and microfabrication have made

it possible to build hybrid structures containing both ferromagnetic and supercon-

ducting components which interact magnetically or via the proximity effect.59,60

Superconductor–ferromagnetic–superconductor planar structures have been found

to show the π-junction Josephson behavior.61–63 Ferromagnet–superconductor–

ferromagnet spin valve structures have also been fabricated64 with potential appli-

cations to spintronics. More complex types of structures have also been produced;
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Fig. 16. Schematic diagram of a nanocomposite superconductor containing ferromagnetic
granules.

for example, Moschalkov et al. fabricated arrays of ferromagnetic nanoscale dots on

superconducting substrates.65,66 A description of such structures based upon the

Ginzburg–Landau theory was developed by Peeters.67

In this section, we consider the interaction between magnetic nanoparticles em-

bedded in a superconductor, as shown in Fig. 16. Theoretical studies of such systems

can be carried out exactly in two limiting cases depending on the relative magni-

tudes of the London penetration depth λ and the coherence length, ξ. If we consider

the nanoparticles to be essentially point-like on the scale of both these character-

istic lengths, then they correspond to effective point-like magnetic-moments of the

form

M(r) =
∑

i

miδ(r− ri) , (94)

where the particle at ri has magnetic moment mi. Interactions between these

isolated moments arise directly from magnetic dipole–dipole forces modified by

the screening of the bulk supercurrents. A second source of the interaction between

the moments is the RKKY interaction modified by the presence of the BCS en-

ergy gap ∆. It is clear that the range of the dipolar forces is determined by the

penetration depth λ, while the usual oscillatory power-law RKKY interaction is

truncated exponentially on a length scale of the order of ξw. Therefore, the dipolar

forces dominate for superconductors in the London limit r0 ≪ λ, while the RKKY

interactions are more important in the Pippard case r0 ≫ l, where r−1
0 = ξ−1

w + l−1,

and l (l–granular size, ξ–electron coherence length) is the mean free path.68 Here,

we consider the London limit and neglect RKKY interactions. Magnetic impuri-

ties interacting via RKKY interactions were considered by Larkin.69 In the London

limit, we first derive general expressions for the configuration of magnetic fields and

the interaction energy of an ensemble of ferromagnetic granules. Then we consider

the case of two interacting nanoparticles. It is found that, as a function of the

temperature, an orientational phase transition can take place. The conditions for

such a phase transition to occur are derived for a chain of ferromagnetic granules.
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Finally, we comment on the application of these results to the determination of the

equilibrium configurations of more general lattices of ferromagnetic particles.

5.1. Magnetic field of ferromagnetic inclusions in a London

superconductor

We determine the magnetic configurations in superconducting nanocomposite sys-

tems by means of Maxwell’s equations. The total current, j, includes both normal

and superconducting parts,

j = js + jn. (95)

The role of the normal currents in a superconductor is negligible, since the super-

conductor exhibits weak magnetic characteristics in the normal state. However, a

normal current will be present within the ferromagnetic inclusions. This normal-

state current can be written in the traditional form

jn = ∇×M , (96)

where M is the magnetization of a material. The supercurrent obeys the usual

London equation

∇× js = −nse
2

m
B (97)

in SI units,70 where B is the magnetic field, ns is the superfluid density and m and

e are the electron mass and charge, respectively.

Combining relations (95), (96), (97) with the Maxwell equation ∇× B = µ0j,

the magnetic field can be found in the form

∇× (∇×B) + λ−2B = µ0∇× (∇×M) , (98)

where λ is the London penetration depth of the field in the superconductor. Since

divB = 0, Eq. (98) can be rewritten as:

−∇2B+ λ−2B = µ0∇× (∇×M) . (99)

For the boundary conditions, we assume that the magnetic field in the supercon-

ductor vanishes far from the region of the ferromagnetic inclusions. According to

these boundary conditions, the solution of Eq. (99) can be expressed as follows:

B(r) =
µ0

4π

∫

d3r′G(|r− r′|)∇× (∇×M(r′)) , (100)

where the Green’s function is given by:

G(|r− r′|) = exp(−|r− r′|/λ)
|r− r′| . (101)
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After the double integration by parts and some algebraic manipulations, this

expression can be rewritten in the general form:

B(r) =
µ0

4π

∫

d3r′ exp(−R/λ) ·
{(

3R(R ·M(r′))

R5
− M(r′)

R3

)

×
(

1 +
R

λ
+

R2

λ2

)

− 2R(R ·M(r′))

λ2 ·R3

}

, (102)

where r = r− r′, R = |r− r′|.
Expression (102) determines the magnetic field outside of the ferromagnetic

inclusions. Since the magnetization of the system M(r) is defined by (96), we have

in (101) that M(r) = 0 outside of the volume of ferromagnetic granules.

5.2. Magnetic field of ferromagnetic quantum dots in a

superconducting nanocomposite material

Assuming that the sizes of the ferromagnetic inclusions are on the nanometer length

scale, they will appear essentially point-like on the scale of the penetration depth

λ. In this case, we can approximate the magnetization as a sum of point magnetic

moments, as shown in (94). Using this approximation in the general expression

(102), we find the result (see Appendix B):

B(r) =
µ0

4π

∑

i

exp(−Ri/λ) ·
{(

3Ri(Ri ·mi)

R5
i

− mi

R3
i

)

×
(

1 +
Ri
λ

+
R2
i

λ2

)

− 2Ri(Ri ·mi)

λ2 · R3
i

}

, (103)

where Ri = r− ri and Ri = |r− ri|.
It is apparent from Eq. (103) that if the temperature of a superconductor

approaches Tc, and the penetration depth λ → ∞, then expression (103) tends

to the limit

B(r) =
µ0

4π

∑

i

(

3Ri(Ri ·mi)

R5
i

− mi

R3
i

)

, (104)

which describes the usual magnetic field of isolated dipoles in the normal-state

medium.

In the other limiting case, if the distance between granules is much more than

the depth penetration, we have:

B(r) =
µ0

4π

∑

i

exp(−Ri/λ)

Ri · λ2
·
(

Ri(Ri ·mi)

R2
i

−mi

)

. (105)

5.3. Interaction energy of quantum dots in a superconducting

nanocomposite material

To determine the collective states of the magnetic moments in superconducting

nanocomposite materials in the London limit, we make use the expression for the
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free energy F of the system71

F =
1

2µ0

∫

d3r{B2 + λ2(∇×B)2} . (106)

Integrating by parts and using the Gauss theorem, we transform Eq. (106) to the

following form:

F =
1

2µ0

∫

d3rB{B+ λ2∇× (∇×B)} = −2πλ2

∫

d3rB · ∇ × (∇×M) . (107)

Integrating by parts and using the Gauss theorem again, we transform Eq. (107)

to the form

F = −2πλ2

∫

d3rM · ∇ × (∇×B) . (108)

Then, using the London Eq. (98) and omitting the magnetostatic self-energy from

consideration, we find the interaction energy of magnetic moments. The obtained

expression can be used to determine the collective state of magnetization of an

ensemble of granules:

U =
µ0

8π

∑

i

∑

j

exp(−Rij/λ) ·
{(

3(Rij ·mj)(Rij ·mi)

R5
ij

− mi ·mj

R3
ij

)

×
(

1 +
Rji
λ

+
R2
ij

λ2

)

− 2(Rij ·mj)(Rij ·mi)

λ2 ·R3
ij

}

, (109)

where rij = rj − ri, Rij = |rj − ri|, i 6= j.

5.4. Spin orientation phase transitions in a nanocomposite

material with arrays of ferromagnetic quantum dots

We begin by studying the magnetic configuration of an isolated pair of magnetic

moments. The interaction energy of such a pair can be written as:

U = −µ0

4π
exp (−R12/λ) ·

{(

3 (R12 ·m1) (R12 ·m2)

R5
12

− m2 ·m1

R3
12

)

×
(

1 +
R12

λ
+

R2
12

λ2

)

− 2(R12 ·m1)(R12 ·m2)

λ2 ·R3
12

}

. (110)

Let us introduce a coordinate system with the origin at the first magnetic

moment m1 and the polar axis along the line connecting magnetic moments.

In this coordinate system, the magnetic moments have the components mi =

mi(cosϕi sin θi, sinϕi sin θi, cos θi) and their interaction energy (110) is written in

the form:

U =
µ0

4π
m1m2 ·

exp(−R12/λ)

R3
12

· f(θi, ϕi, R12/λ) , (111)
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where

f(θi, ϕi, x) = −2(1 + x) cos θ1 cos θ2 + (1 + x+ x2) sin θ1 sin θ2 cosϕ (112)

and ϕ = ϕ2 − ϕ1.

Differentiating the function f(θi, ϕi, x) with respect to angular variables and

equating the results to zero, we find that there are four possible stable energy

configurations:

θ1 = θ2 = 0 ,

θ1 = θ2 = π ,

0 6 ϕ < 2π ,

(113)

θ1 = θ2 = π/2 ,

ϕ = π ,
(114)

θ1 = θ2 = π/2 ,

ϕ = 0 ,
(115)

θ1 = 0, θ2 = π ,

0 6 ϕ < 2π ,
(116)

which are illustrated in Fig. 17.

The further analysis shows that configurations (115) and (116) are saddle points,

not energy minima. Evaluating the second derivatives of (112), we obtain the

stability condition of configuration (113):
(

R

λ

)2

− R

λ
− 1 6 0 . (117)

This implies that the ferromagnetic ordering of the pair of magnetic moments is

possible if:

R

λ
6

1

2
(1 +

√
5) . (118)

It turns out that if condition (118) is violated, then the alternative configuration

(114) is a stable energy minimum. We can conclude that if the temperature changes,

and the penetration depth parameter λ(T ) varies in such a way that condition (118)

is not satisfied, then the ground state orientation will change from (113) to (114).

This result is readily generalized to ordered arrays of ferromagnetic granules,

and so we conclude that orientational phase transitions are possible in systems of

quantum dots in a superconducting matrix. For example, it is clear that condition

(118) can be applied to linear chains of quantum dots. On the other hand, the

results for square or cubic lattices remain to be determined.

We have considered the interactions between nanoscale magnetic dots embed-

ded in a bulk superconducting material. Our approach is valid for materials which

are well described in the London limit r0 ≪ λ, since RKKY interactions are negligi-

ble. We have shown that, depending on the dimensionless parameter R/λ, different
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Fig. 17. Four energy saddle points of a pair of ferromagnetic quantum dots, as defined in (113).
Of four, 1 and 2 correspond to the ground state, depending on condition (118). States 3 and 4 are
never stable.

stable ground states occur. So, as the temperature varies, orientational phase tran-

sitions will take place for periodic arrays of such quantum dots. Of course, our

calculation does not include all types of interactions which define the orientation

of magnetic moments in space. In particular, we neglect the energy of a magnetic

anisotropy of granules which is determined by the shape of granules or the type of

their crystal lattice. However, when the shape of granules is close to the spherical

one and the lattice of a ferromagnet has the cubic symmetry, then Eq. (109) will

be essentially exact.

In the experimental systems studied by Moshchalkov,66 a square of Pt/Co

magnetic nanodots was deposited on the surface on the Pb superconductor, which

is of type I(k = 0.48). The dots were about 0.26 µm in diameter, and they were de-

posited on the grid with a spacing of 0.6 µm. For Pb, the penetration depth is 39 nm

at low temperatures. So, this array was in the limit R > λ and the dot–dot inter-
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action would be expected to correspond to the antiferromagnetic alignment shown

in the second state in Fig. 17. With increase in the temperature, the transition to

the ferromagnetic alignment would occur according to Eq. (118) at λ = 0.36 R,

i.e., 219 nm.

According to the Casimir formula λ(T ) = λ(0)(1 − t4)
−1/2

with t = T/Tc,

this would occur at T = 7.14 K, as compared with Tc = 7.2 K. Therefore, the

experimental conditions for the transition to be observed are certainly feasible. Of

course, for an exact comparison with theory in this case, our theory should be

generalized to deal with magnetic particles near the surface rather than with those

embedded in the bulk of a superconductor.

Of course, it would be interesting in the future to generalize our results to super-

conductors in the Pippard limit, where the RKKY interactions between quantum

dots will dominate over dipolar forces.69

Expression (110) can be used to study, by means of numerical methods, the

magnet configurations and the orientational phase transitions in an ensemble of

nanogranules. It is possible to determine the conditions of orientational transfor-

mations in the analytic form for the ordered structures (a chain of granules, plane

and volume lattices). Inasmuch as the state of the magnetic subsystem of a specimen

at phase transitions is changed, this phenomenon can be experimentally observed

under changing a magnetic susceptibility in the region of low fields.

6. Spin-orientation Phase Transition in Superconductors

In order to determine the collective state of magnetic moments in nanocomposite

materials with the matrix made of a London-type superconductor, we use formula

103 for the energy of magnetic interaction.

First of all, we note that the realization of one or other magnetic configuration

is defined by both the competition of diamagnetic effects from the side of the super-

conducting matrix and the magnetostatic interaction in the system of ferromagnetic

granules. At lower temperatures eliminating the thermal disordering of the system,

the magnetostatic interaction leads to a correlation of magnetic moments. As main

conditions for the formation of magnetic configurations, we take the equivalence of

all sites and the zero value of the net magnetic moment of the lattice. The planar

lattice of granules by itself sets a preferred direction in space. Therefore, we will

separate two configurations from the whole manifold of spatial orientations of mag-

netic moments. The first configuration is presented in Fig. 18. It is characterized

by the orientation of the magnetization of granules which is orthogonal to the base

plane. The alternation of the magnetization of neighboring granules decreases, to

a certain extent, the energy of magnetic interaction. In addition, such a distribu-

tion of magnetic moments favors a decrease of the amplitude of a magnetic field

in the superconducting matrix, which is also advantageous from the energy view-

point. Thus, the given configuration can be considered as a version of the magnetic

order.
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Fig. 18. Two-dimensional lattice of magnetic points. Magnetic moments (black color) are
directed up or down (white color); a is the lattice constant.

Fig. 19. Two-dimensional lattice of magnetic points. Magnetic moments are aligned in the plane
in the form of chains; a is the lattice constant.

A configuration of the second type is shown in Fig. 19. It is characterized by

the distribution of magnetic moments in the base plane of the lattice such that

the magnetic moments are aligned as magnetic chains with alternating directions
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of the magnetization. Here, like the configuration presented in Fig. 18, the main

requirement, the equivalence of the states of magnetic points, is satisfied.

A similar distribution also decreases the energy of magnetostatic interaction,

on the one hand, and favors a decrease in the amplitude of a magnetic field in a

superconductor, on the other hand. At the same time, the planar orientation of

magnetic moments has the basic distinction from the orthogonal one. For example,

by means of a continuous deformation of the magnetization in the base plane, the

configuration in Fig. 18 can be transferred into the structure shown in Fig. 19.

Such a system is characterized by a coherent rotation of magnetic moments by

an angle ±ϕ relative to the principal direction of the lattice. In this case, there

occurs both the modulation of the direction of moments at sites of the lattice and

some increase in the energy of magnetic chains, but these processes are accompanied

by the formation of magnetic vortices in cells, which promotes a decrease in the

energy of magnetic interaction. The states of separate magnetic points in the lattice

remain equivalent at the zero total magnetization.

Thus, the questions arise how the energy of the array of magnetic moments in

the base plane shown in Fig. 20 depends on the angle ±ϕ and to which value it

is equal in the equilibrium state. To answer these questions, we consider relation

(110) for the interaction energy and reduce it to a single sum by virtue of the

Fig. 20. Part of the lattice with a modulated planar distribution of the magnetization; a is the
lattice constant. Circles stand for magnetic points, and the arrows on them indicate the directions
of magnetic moments mnk in the base plane (n, k — the spatial indices of magnetic points). The
angle ϕ defines the deviation of the moments of magnetic points from the principal direction of
the lattice. The states of all points in the given configuration are equivalent. The net magnetic
moment is zero. The separated circles denote schematically magnetic vortices. The dotted lines
are tangents to the directions of magnetic moments at sites of the lattice.
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fact that the states of magnetic points are equivalent. In this case, in order to

calculate the energy of the lattice, it is sufficient to determine the energy of a single

magnetic point, e.g., m0,0, located at the origin of the coordinate system and then

to multiply the result by the total number of magnetic points N . Relation (110)

becomes significantly simpler:

U = −µ0

4π

N

2

{

3

(

1− ∂

∂α

)

+
∂2

∂α2

} N
∑

i

exp(−α · ri/δ)
(ri ·mi)(ri ·m0,0)

r5i

+
N

2

{

1− ∂

∂α
+

∂2

∂α2

} N
∑

i

exp(−α · ri/δ)
mi ·m0,0

r3i
. (119)

By writing formula (119), we used the method of differentiation with respect to the

parameter α which should be set equal to 1 after the calculations. The index “i”

stands for the summation over all sites of the lattice. Performing the summation in

relation (119), it is convenient to introduce the pair of indices (n, k) defining the

position of a site in the lattice (Fig. 20) instead of the running index of magnetic

points “i”. It is easy to see that the system represented in Fig. 20 possesses the

translational invariance with a period of 2a so that:

mn,k = mn+2l,k+2p ,

l, p = ±1,±2, . . .
(120)

The lattice has only four types of magnetic points differing from one another by a

spatial orientation of magnetic moments. Their vector components depend on the

angle ϕ in the following manner:

mn,k = mn+2l,k+2p, m2l,2p = m0,0 =





cosϕ

sinϕ

0



 ,

m2l+1,2p = m1,0 = m





cosϕ

− sinϕ

0



 ,

m2l,2p+1 = m0,1 = m





− cosϕ

sinϕ

0



 ,

m2l+1,2p+1 = m1,1 = m





− cosϕ

− sinϕ

0



 ,

l, p = ±1,±2, . . .

l, p = ±1,±2, . . . ,

(121)

where m is the modulus of the magnetic moment of a site.
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After the substitution of (121) in (119) and the summation over sites of the

unbounded lattice, we get the following interesting result. It turned out that the

interaction energy of the system of magnetic points (see Fig. 20) does not depend

on the angle ϕ and is determined by the relation

U‖

N
=

µ0

4π

m2

a3
· F (a/δ) , (122)

whereN is the number of sites of the lattice,m is the magnetic moment of a granule,

F (a/δ) is the energy characteristic of a magnetic state which is a universal function

of a single parameter and determines the dependence of the energy on both the

period and the field penetration depth in the case where the magnetic moments are

distributed in the base plane of the lattice. It can be represented in the form of a

sum

F (a/δ) =
µ0

4π

(

−1 +
∂

∂α
+

∂2

∂α2

)

· 1
8

∞
∑

l=1

∞
∑

p=0

exp(−2α(a/δ)
√

l2 + p2)

(l2 + p2)3/2

−
(

−1 +
∂

∂α
+

∂2

∂α2

)

· 1
4

∞
∑

l=−∞

∞
∑

p=−∞

exp(−α(a/δ)
√

(2l+ 1)2 + (2p+ 1)2)

((2l + 1)2 + (2p+ 1)2)3/2

−
(

3− 3
∂

∂α
+

∂2

∂α2

)

· 1
2

∞
∑

l=−∞

∞
∑

p=−∞

((2l + 1)2 − (2p)2) · exp(−α(a/δ)
√

(2l + 1)2 + (2p)2)

((2l + 1)2 + (2p)2)5/2
.

(123)

Thus, there occurs the degeneration of the state in the parameter ϕ in the presence

of a tough correlation of the mutual orientations of moments of the ensemble of

magnetic points. The energies of the configuration shown in Fig. 19(1b) and the

ensemble with a modulated distribution of the magnetization (Fig. 20) coincide. In

turn, the determination of the energy of magnetic interaction for the configuration

possessing the orthogonal orientation of magnetic moments (Fig. 18) requires a

smaller amount of calculations, because the first sum in formula (119) vanishes.

The result of calculations can be represented in the form:

U⊥

N
=

µ0

4π

m2

a3
· Φ(a/δ) , (124)

where Φ(a/δ) is the energy characteristic of the magnetic state which a universal

function of the single parameter and determines the dependence of the energy on

both the period and the field penetration depth under the distribution of magnetic

moments normally to the base plane of the lattice. This function can be represented
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Fig. 21. Plots of the energy characteristics F (a/δ) and Φ(a/δ) of states of the lattice with normal
and planar orientations of magnetic moments, respectively. Values of F (0) and Φ(0) correspond
to the transition of the superconducting matrix into the normal state.

in the form:

Φ(a/δ) =
µ0

4π

(

1− ∂

∂α
+

∂2

∂α2

)

· 1
2
·
{

∞
∑

l=1

∞
∑

p=0

4 · exp(−α · (a/δ) ·
√

2 · l2 + 2 · p2)
(2 · l2 + 2 · p2)3/2

−
∞
∑

l=−∞

∞
∑

p=−∞

exp(−α · (a/δ) ·
√

2 · (l + 1/2)2 + 2 · (p+ 1/2)2)

(2 · (l + 1/2)2 + 2 · (p+ 1/2)2)3/2

}

.

(125)

The calculation of the functions (a/δ), Φ(a/δ) on the basis of relations (123) and

(125) is not a difficult task and can be realized with any mathematical software.

The results are presented in the graphical form in Fig. 21.

In Fig. 21, we represent the plots of the energy characteristics of two different

states of a magnetic lattice versus the ratio of the parameter of a cell and the pen-

etration depth of the magnetic field, a/δ. The limit a/δ → 0 corresponds to the

transition of the matrix into the normal state. It is obvious that a lattice with planar

orientation of magnetic moments (Figs. 19 and 20) possesses the lower energy in

the normal state at a/δ = 0. Therefore, the state with the perpendicular direction

of moments (Fig. 18) cannot be realized at all in the absence of a superconductor.

As the temperature decreases and the penetration depth diminishes gradually, the

parameter a/δ begins to grow. When this parameter attains the value a0/δ ≈ 3.3,

the configuration with the orthogonal orientation of magnetic moments (Fig. 18)

becomes more advantageous in energy, and the orientation phase transition occurs

in the system. At a decrease in the temperature, a similar scenario of events com-

pletely corresponds to a reorientation of the magnetic moments of an isolated pair

of magnetic points which was considered in the previous work.71
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In conclusion, we note that an analogous phase transition can be expected to

occur in a planar lattice with rectangular cell. The only difference will consist in the

elimination of the degeneration relative to the directions of magnetic moments in the

base plane. Of course, the direct observation of a phase transition will be hampered,

because the problem involves the magnetic lattice surrounded by a superconductor.

However, a similar orientation transformation must happen also in a lattice applied

on the surface of a massive superconductor, though values of the parameter a0/δ

will be different in this case.

7. Quantum Computer on Superconducting Qubits

7.1. Principle of quantum computers

Silicon microprocessors, being the main element of modern computers, have at-

tained the limit of development. The miniaturization, i.e., the aspiration to place

as much as possible components on a more and more smaller area of a chip, has

approached the boundary of physical possibilities. Further, it will be impossible

to conserve the stability of the operation of computers. Many researchers believe

that silicon processors will begin to go into the past in at most five years, and the

production of chips will be based on the other material — carbon nanotubes. It is

worth noting that the computational processes are accompanied by the release of

heat. R. Feynman said: “Any classical computation is a physical process running

with the release of heat.” As known, the calculations lead to an increase in the

entropy and, hence, to the release of heat. The idea of the creation of quantum

computers arose several decades ago, when it was proposed to reject the applica-

tion of electric circuits in the processing of information and to pass to the use of

quantum mechanics. The classical computers are processing the information only

on the basis of ideas of one bit of information (it corresponds to the transition from

state 0 to state 1 or conversely). The quantum computers can process the informa-

tion, by basing on the ideas of a quantum bit (qubit) which allows one to realize

simultaneously four logical operations (0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 2).

Qubit is the abridged notation for quantum bit and means the unity of infor-

mation coded in a quantum system which can be in the states |0〉, |1〉, and in any

superposition of these states.

Let the state of a qubit be described by the state |f〉 which can be represented

as a superposition of states |0〉 and |1〉:

|f〉 = a|0〉+ b|1〉 ,

where

a2 + b2 = 1 . (126)

Since the devices can register only classical quantities, the measurement of a

quantum bit will give states |0〉 or |1〉 with probabilities determined by the squares

of the coefficients a and b.

1230013-45



September 6, 2012 8:37 WSPC/Guidelines-IJMPB S0217979212300137

S. P. Kruchinin & H. Nagao

The use of the principle of superposition allows one to increase the informational

space exponentially with linear growth of the size of a physical system, because the

register including n qubits can be in a superposition of at once 2n states.

In addition, quantum mechanics admits the existence of the so-called entangled

states possessing no analogs in classical physics.

An ensemble of qubits is a collection of qubits in different but given states.

It is worth noting that, even on the level of mathematics, a quantum computer

operates in a basically different way than that of a classical computer.

Input data are coded in “quantum cells of memory”. In this case, the collection

of qubits becomes a single quantum system. This system undergoes the sequence

of elementary quantum operations. Quantum computations are a realization of the

most astonishing idea to apply the principles of quantum mechanics to the world

of computers. Ordinary computers, despite their complexity, use classical laws of

mechanics. In the recent years, the theory of classical computations was developed

on the basis of works by A. Turing. With the appearance of quantum computations,

the new possibilities have arisen and the situation is radically changed. Quantum

methods can be successfully used in the solution of mathematical problems, though

the time consumed for the solution of mathematical problems increases exponen-

tially with the complexity of a problem.

For the theory of quantum calculations, the physical nature of qubits is not of

crucial importance; the basically important point is that the system in the course

of calculations obeys the laws of quantum mechanics.

7.2. Superconducting qubits

The realization of a quantum computer requires the availability of systems with

doubly degenerate ground state. For this reason, a great attention is paid to sys-

tems with two-level wells which can be fabricated by facilities of solid-state elec-

tronics. The modern technology allows one to produce circuits containing millions

of transistors and Josephson junctions.

By observing the operation of electrical circuits at temperatures close to the

absolute zero, the researchers found a new proof of the fact that the laws of quantum

mechanics are suitable not only for the microscopic objects (atoms and electrons),

but also for large electronic schemes which include superconducting bits (qubits).

Many years ago, the attempts to construct a Josephson computer on the basis

of the Josephson tunnel logic hopelessly failed. The principal reason for the failure

was the huge technological dispersion of parameters of tunnel junctions, which did

not allow one to produce large microcircuits. A Josephson computer can be created

only on the way having nothing in common with that based on semiconductors,

namely it can be just a quantum computer.

The hope is related to two circumstances. First, the fabrication of supercon-

ducting qubits is quite possible in the framework of the up-to-date technology.
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Second, the presence of a gap in the spectrum of excitations of a superconductor

allows one to expect the suppression of generation in a system.

Let us consider the first steps on the way of the construction of a superconduct-

ing quantum computer. First, we consider, in brief, the Josephson effect.

7.3. The Josephson effect

The Josephson effect is certainly one of the most interesting phenomena in su-

perconductivity. The Josephson effect consists in the passage of a superconducting

current through a thin dielectric layer separating two superconductors (the so-called

Josephson junction).

It was predicted by an English physicist B. Josephson on the basis of super-

conductivity theory (1962, Nobel’s prize in 1973) and discovered experimentally in

1963. Conduction electrons pass through a dielectric (a film of copper oxide ∼ 10 Å

in thickness) due to the tunneling effect.72,73

In Fig. 22, we present a scheme of the Josephson tunneling between two super-

conductors. The Josephson stationary effect consists in that the superconducting

current

Jc = J0 sinϕ , (127)

dϕ

dt
=

2eV

~
, (128)

where ϕ is the phase difference on the interface of superconductors, V is the applied

voltage and J0 is the critical current through the junction.

The Josephson effect indicates the existence of the electron ordering in super-

conductors, namely, the phase coherence: in the ground state, all electron pairs

have the same phase ϕ characterizing their wavefunction Ψ1 =
√
ns1e

iϕ1 . Accord-

ing to quantum mechanics, the presence of a phase difference must cause a current

through the junction. The discovery of such a current in experiment proves the

existence of macroscopic phenomena in the nature which are directly determined

by the phase of a wavefunction.

Ψ =
√
neiψ . (129)

Fig. 22. Scheme of the Josephson tunneling between two superconductors.
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Fig. 23. Current passing through two series-connected Josephson junctions.

7.3.1. Current passing through two series-connected Josephson junctions

The Josephson current in the scheme drawn in Fig. 23 can be easily determined with

the help of the elementary Feynman approach to a Josephson junction as a two-

level quantum-mechanical system.74 By introducing an intermediate object, some

island, with the wavefunction Ψ0 into the two-level system characterized by the

wavefunctions Ψ1 =
√

ns1/2e
iϕ1 and Ψ2 =

√

ns2/2e
iϕ2 , we write the Schrödinger

equation in the form:

i~
dΨ1

dt
=

eV

2
Ψ1 +KΨ0 , (130)

i~
dΨ0

dt
= KΨ1 +KΨ2 + E0Ψ0 , (131)

i~
dΨ2

dt
= KΨ0 −

eV

2
Ψ2 . (132)

The formula for a constant current running through two series-connected

Josephson junctions at the zero external potential difference takes the form:

J = ~
∂
√
nS1

∂t
= −K2

E0

√
nS2 sin(ϕ2 − ϕ1) . (133)

This relation can be rewritten as follows:

Jc = J0 sin(ϕ) , (134)

where ϕ = ϕ2 − ϕ1 is the phase difference. The relation obtained is named the

Josephson formula (the Josephson stationary effect) and determines the current of

superconductive electron pairs due to the tunneling transition.

The Josephson coupling energy is an important parameter of the Josephson

junction. From (127), we have:

E =

∫

JV dt =
hJ0
2

∫ π

0

sinϕdϕ = −hJ0
2e

cosϕ . (135)

The Josephson effect is still one of the phenomena that make superconductors

such a fascinating area of study. Despite the more than 40-year intense studies and

numerous applications, the Josephson effect remains an important field of researches

in connection with the use of small superconducting grains.
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Fig. 24. Basic diagram of a “quantum interferometer”.

7.3.2. SQUIDS

The Josephson effect allowed one to construct superconducting interferometers,

SQUIDs (superconducting quantum interference device), which contain parallel

weak connections between superconductors.75 In Fig. 24, we present a scheme with

Josephson junctions.

The total current running from 1 to 2 is equal to:

I = I0d[sin(∆ϕ1) + sin(∆ϕ2)] , (136)

where

∆ϕ1 = ϕ2A − ϕ1A ,

∆ϕ2 = ϕ2B − ϕ1B

are the phase differences on the first and the second Josephson junctions. There

occurs a distinctive interference of the superconducting currents running through

these connections.

Inside the superconductor, the current is zero j ≡ 0. We will use the following

formula for the current j:

j ∼ h∇ϕ− 2e

c
A . (137)

We can write:

ϕ1B − ϕ1A =
2e

hc

∫

C1

A · dl , (138)

ϕ2B − ϕ2A =
2e

hc

∫

C2

A · dl . (139)
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Summing up these two equations, we get:

ϕ1B − ϕ2B + ϕ2A − ϕ1A =
2e

hc

∮

A · dl = 2π
Φ

Φ0
. (140)

Thus, we have:

∆ϕ1 −∆ϕ2 = 2π
Φ

Φ0
, (141)

where Φ is the total quantum flux.

The flux quantum is defined as:

Φ0 =
h

2e
. (142)

For a balance SQUID ring system, we can write:

∆ϕ1 = ϕ0 + π
Φ

Φ0
,

∆ϕ2 = ϕ0 − π
Φ

Φ0
. (143)

The total current in the SQUID is:

I = I0 sin(∆ϕ1) + I0 sin(∆ϕ2)

= I0 sin

(

ϕ0 + π
Φ

Φ0

)

+ I0 sin

(

ϕ0 − π
Φ

Φ0

)

= 2I0 sin(ϕ0) cos

(

π
Φ

Φ0

)

= Imax

∣

∣

∣

∣

cos

(

π
Φ

Φ0

)∣

∣

∣

∣

(144)

with Imax = 2I0 sin(ϕ0).

In this case, the critical current turns out to be periodically dependent on the

flow of an external magnetic field, which allows one to use such a unit for the exact

measurement of the magnetic field.

7.3.3. Flux qubit

Let us consider the first steps on the way of the creation of a superconducting

computer. The simplest superconducting system demonstrating the coherency is

SQUID which is a superconducting ring including a Josephson junction at one

point. The energy of this system contains two terms — Josephson transition energy

(cosΦ) and the energy related to the ring L:

H = −EJ cos

(

2π
Φ

Φ0

)

+
(Φ− Φx)

2

2L
. (145)

Here, Φ is the difference of superconductive phases at the junction. The supercon-

ductive phase in the ring is proportional to a magnetic flow applied to the ring

1230013-50



September 6, 2012 8:37 WSPC/Guidelines-IJMPB S0217979212300137

Nanoscale Superconductivity

Fig. 25. Scheme of the Josephson tunneling between two superconductors.

(quantization of the magnetic flow). If Φx is equal exactly to a half of the magnetic

flow, the potential of a SQUID becomes doubly degenerate:

Two minima of the well correspond to the currents in the ring passing in the

clockwise � and counterclockwise directions 	, respectively.76

A superposition of these states in SQUID was observed experimentally in

works.76,77 These experiments demonstrated clearly the possibility to create a su-

perposition of states in a system with a macroscopic number of particles. In the

given case, the circular current including 1013 electrons was registered in a loop.

The states participating in a superposition were macroscopically distinguishable,

by differing from one another by the currents, whose difference was several mi-

croamperes. We indicate that, at the recent time, the important notion has been

introduced in the course of studies of structures with Josephson junctions. It is the

notion of macroscopic quantum coherence. In such systems, the Josephson energy

can have two almost degenerate minima at values of the phase which are sepa-

rated by a potential barrier (Fig. 25). It is possible that the phase passes from

one minimum to another one due to the quantum-mechanical tunneling, and the

eigenstates of the system are superpositions of the states localized in the first and

second minima.

The operation of a superconducting computer requires low temperatures which

are needed, in particular, to suppress heat-induced excitations destroying the quan-

tum mechanical state of a system.

It is worth noting that the best condition for the observation of these current

states is defined by a size of the superconducting ring. If the ring size is taken to be

1 cm, there appear the effects of decoherence which will destroy the current states.

But if the ring is taken much smaller (say, 5 µm), then it is possible to observe

these states. These states were discovered in experiments with Rabi oscillations.77

7.3.4. Charge qubit

The second type of a superconducting bit can be realized in the “Cooper pair box”

system which is characterized by two charge states: without excess Cooper pair

|0〉 and with a single Cooper pair |1〉. “Cooper pair box” is a nanotransistor with

Coulomb blockage with controlling voltage Vg, as shown in Fig. 26. A “Cooper
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Fig. 26. Cooper-pair box [× denotes a Josephson junction (JJ)], Cg and Vg are the capacitor
and the controlling voltage.

pair box” is represented by an aluminum superconducting film of the order of

1 mm in size with the working temperature of about several milli-Kelvin, which is

significantly lower than the superconducting temperature Tc. Its quantum state can

be characterized by the number of Cooper pairs. According to the BCS theory, the

ground state of a superconductor is a superposition of states with different numbers

of Cooper pairs. The excited, i.e., unpaired states in an ordinary superconductor

are separated from the ground state by the energy gap. Therefore, as the number

of electrons varies by 1, i.e., N → N ± 1, the ground state energy must be changed

by ±δ. The sign (plus or minus) depends on that the initial number of electrons N

is even or odd. The effects of parity of the number of electrons which are considered

in this chapter in connection with mesoscopic superconductivity were successfully

measured on nanotransistors with Coulomb blockage.

The Hamiltonian of such a system can be written as:

H = Ec(n− ng)
2 + Ej cosϕ , (146)

where Ec and Ej are the charging and Josephson energies and ϕ is the phase

change. In the charging mode where Ec ≫ Ej , only two lower charged states are of

importance. The controlling voltage Vg induces a charge in the box

ng = Cg
Vg
2e

, (147)

where 2e is the charge of each Cooper pair and Cg is the gate capacitance. At

ng = 1/2, such a system operates as a two-level atomic system, in which the states

|0〉 and |1〉 can be realized. The control is realized by a voltage Vg. On the basis of

such a qubit, a system of two qubits was realized,72,76 and the formation of entangled

states was demonstrated. The effects of parity of the number of electrons which are

considered in this chapter in connection with mesoscopic superconductivity were

successfully measured on nanotransistors with Coulomb blockage.

7.3.5. Phase qubit

There exists one more possibility to realize SQUIDs with the use of high-

temperature superconductors possessing the d-pairing (n-loop ones).73
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The physics of d-pairing was considered in Ref. 73. Quantum processors on the

base of these SQUIDs are developed at the Canadian company “D-wave”.

We note also that, in addition to superconducting qubits, quantum comput-

ers use qubits possessing other physical properties. Scientists at the Yale University

took a very fine aluminum plate in the fabrication of a quantum chip. A single qubit

consists of one billion of aluminum atoms which behave themselves, nevertheless,

as a single unit that can be in two energy states denoted as 0 and 1. Such quantum-

mechanical states of a qubit cannot be long-term — their lifetime is about one

microsecond. But it is sufficient for a chip to solve the so-called algorithm. We have

considered the technologies of superconducting computers which represent a new

type of quantum computers. These computers are based on the other mechanism

obeying the laws of quantum mechanics. We recall that, till the recent time, the

principle of devices was invariable and the archetype of such devices is mechanical

clocks. In such devices, all stages of their relative motion can be observed; there-

fore, it is quite simple to understand their structure. On the contrary, the principle

of operation of quantum computers involves the specific features of quantum me-

chanics which are difficult to understand. Nevertheless, by possessing the quantum

resources, we can solve the very difficult complicated problems. In particular, the

most important potential field of application of quantum computers is the problem

of the exact calculation of properties of quantum systems.
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