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We study the localization of an electron in a binary quantum system formed by a pair
of quantum dots (QDs). The traditional theoretical consideration of such systems is

limited to the symmetrical case when QDs in such double quantum dot (DQD) are

assumed identical in all respects. In this paper, we model the effects of breaking QD
similarities in a DQD by studying two-dimensional (2D) DQDs as a double quantum

well (DQW). This is done by solving the Schrödinger equation, with parameters cho-

sen to describe an InAs/GaAs heterostructure. We calculate the energy spectrum of
the electron confinement and the spectral distribution of localized/delocalized spatial

states. Both symmetric and asymmetric QW shapes are considered and their effects are
compared. The effects of symmetry breaking are explained within the framework of the
two-level system theory. We delineate the QW weak and strong coupling cases in DQW.

In particular, we show that the coherence in ideal DQW is unstable in the case of a weak

QW coupling. Within the framework of the proposed approach, a charge qubit realized
on a double quantum dot is discussed and, as an example, a qubit based on an almost

ideal DQD is proposed.

Keywords: Electron tunneling; Electron localization; Quantum wells; Semiconductors;
Charge qubit.

1. Introduction

The goal of this paper is to explore the significance of symmetry breaking on the sta-

bility of tunneling in binary quantum system, like quantum dots (QDs) or (QWs).

The importance of such systems is due to their relevance to building quantum

computers. One of the main concepts employed for quantum computer design is

the spatial isolation of single electron in a double quantum dot (DQD).2,3 Charge

qubit based on electron localization in the left or right quantum dot of a DQD

has been reported in Refs.7–10 One of the main problems with quantum computing
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is the induction of qubit errors. This issue seems to be inevitable, since quantum

states of qubits are sensitive to slight variations of temperature, tiny vibration, or

stray photons, even single photon. These can cause random change of the qubit

state, which gives non-controllable error. The state of neighboring qubits can also

change haphazardly as a QD can couple to signals captured by their neighbors. The

quantum fluctuations or “charge noise” on a controlled phase gate may perturb the

charge stability in a substantial way.9,13,14 Understanding the symmetry breaking

issues has a crucial applicability in quantum engineering since it instructs on the

way quantum states of QDs15 coupling is utilized. Moreover, such understanding

lays the ground for advanced manufacturing of next generation device fabrication

and quantum devices.

We have recently proposed an approach to studying electron tunneling in a

DQD based on modeling the spatial distribution of a single electron in the DQD

for the energy levels of the entire spectrum. The theoretical description for electron

states in InAs/GaAs heterostructures is based on the effective potential model

proposed in Ref.16 Main aspects of symmetry violation and how each affects the

entanglement were studied reported in Refs.17–20 In line with this study, we here-in

evaluate how small variations of the system geometrical parameters (QD size and

shape, and the DQD topology) and the applied fields will affect the stability of

localized/delocalized states in DQD. Also, we delineate the limits at which charge

tunneling in ideal DQD becomes unstable with due to small fluctuations affecting

across the whole spectrum of the electron confinement spectrum. We argue that the

QD coupling in an ideal DQD (initially defined as a system with infinite coherence)

can become unstable for any small fluctuations, ∆, in the energy of electron levels.

This feature turns the DQD into an extremely sensitive sensor; as suggested in our

article.17

In the present paper, we focus on two types of charge qubit effectors: i) the

medium, which distorts the wave function of an electron in coupled DQD, and ii) the

quantum state fluctuations (like an electrical pulse variations) induce an asymmetry.

Fluctuation risers (for instance, a molecule that is being detected, or pressure that

strains the device, or a tiny displacement in the range of atomic bond length)

change the coupling parameter W and asymmetry ∆ of bi-confinement in DQD.

Our numerical modeling aims at analyzing the dynamics of localized/delocalized

states in electron spectrum under DQD geometry variations. We demonstrate that

the ratio W/∆ determines the electron localization within the DQD. The modeling

of the variations of the geometry allows us to simulate the effects of environmental

influence and asymmetry fluctuations on the coherence in the DQD based charge

qubit. We show that the numerical uncertainty like 0/0 takes place due to the

ratio W/∆ and defines the spectral distribution of localized/delocalized states in

ideal DQD(∆ = 0). Such an ideal system is suitable as a model for a theoretical

description of quantum systems for only the limiting case where the mathematical

limit ∆→ 0 is possible. In this paper, we consider realistic binary quantum systems,

which are usually asymmetric (∆ > 0).
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Our theoretical model of InAs/GaAs heterostructures for quantum dots is pre-

sented in Sec. 2 of this paper. In Section 3, theoretical discussion of two-level sys-

tems, anti-crossing levels, and electron coupling in double quantum dots are given.

The notations for describing the electron localization in DQD is presented in Sec-

tion 4. To illustrate the theory assumptions, the results of our calculations for

the electron tunneling in symmetrical and asymmetrical DQWs are presented in

Section 5. Here, we discuss numerical examples of distributions of localized and

delocalized states in the spectrum of a single electron. The numerical impacts and

the influence of geometry factors on the tunneling for two cases, the ideal and ”non-

ideal” symmetric double quantum well are shown. Interpretation of the results is

presented in Section 6. We describe the spectral instability of charge carrier tunnel-

ing in DQD in relation to the effects of environmental influence (e.g., fluctuations of

electrical pulse) on the coherence of DQD based charge qubit. A number of lasting

statements on these quantum effects are provided.

2. Effective Model for InAs/GaAs Quantum Dots

The electron state in InAs/GaAs QDs is modeled16 based on the kp-perturbation

in the framework of the single sub-band effective mass approximation. In this case,

the eigenvalue problem is formulated by the Schrödinger equation:(
Ĥkp + Vc(r) + Vsr)

)
Ψ(r) = EΨ(r), (1)

where E is the electron binding energy, Ĥkp is the single band kp-Hamiltonian

operator Ĥkp = −∇ ~2

2m*∇, m* is the electron effective mass, which depends on the

electron coordinates written as m*(r), and Vc(r) is the band gap potential. The Ben-

Daniel-Duke boundary conditions21 are used at the QW-substrate interface. Here,

we describe the confinement model proposed in Ref.16 for the conduction band.

Both potentials Vc(r) and Vs(r) act within the QWs extent. While the potential Vc
is attractive, the potential Vs is repulsive. The Vs potential reduces the strength of

the electron confinement; it is added to simulate the strain effect in the InAs/GaAs

heterostructure. Schematics one dimension (1D) representation for this band gap

model is given in Fig. 1. The boundary of a 2D InAs QW embedded into the GaAs

substrate is shown, which embodies the spatial extents of the band gap model.

The energy barrier is suchthat inside the QD the bulk conduction band offset is

null, i.e., Vc = 0, while it is equal to Vc > 0 outside the QD. The band gap potential

for the conduction band is fixed to Vc(r) = 0.594 eV. The bulk effective masses of

InAs and GaAs are m∗1 = 0.024 m0 and m∗2 = 0.067 m0, respectively, where m0

is the free electron mass.

The magnitude of the effective potential (Vs(r) that simulates the strain effect

is adjusted so to reproduce experimental data for InAs/GaAs quantum dots. The

adjustment involves the materials composing the heterojunction, and to a lesser

extent, the QD topology. For example, the obtained magnitude of 0.21 eV of Vs
for the conduction band was discussed in Ref.16 This value was reconfinned by
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Fig. 1. The ellipsoidal shaped QW: the band gap model for InAs/GaAs heterostaction and geom-

etry QW.

similar results obtained from eighth band kp-calculations for InAs/GaAs QDs.22

Another value of 0.31 eV for Vs was obtained23 from experimental data reported by

Lorke et al.24 The main advantage of using the effective potential is the theoretical

simplicity, as well as the practical calculations, even in the case of complex geometry

of nano-sized systems. The effective potential model is compatible25 with existing

experimental data for InAs/GaAs heterostructures.

3. DQD as a two-level system

Let two coupled InAs/GaAs quantum dots be an example of a two-level system. The

confinement of an electron is modeled by the one-dimensional formalism, which can

be found in Ref.27 The electron wave function in such quantum system is represented

as a superposition of two functions. The first one |0〉 is associate to an electron state

of the left QD, considered as isolated. The second one |1〉 describes an electron

state in right QD, considered as isolated. The superposition is represented as linear

combination: a |0〉+ b |1〉, where |a|2 + |b|2 = 1. The electron is delocalized over the

DQD in this state. We describe a localized state by the condition that a (or b) is

close to zero and b (or a) is close to one.

In the ( |0〉 , |1〉) basis, the Hamiltonian (1) takes the matrix form:

H =

(
E+ W01

W10 E−

)
. (2)

Where W01 and W10 are the coupling matrix elements, and E+ and E− are energies

of the electron in the coupled DQD. Note that this matrix form corresponds to the

simple case of almost identical confinements in the DQD: V0 ≈ V1, where V0 (and

V1) is the confinement potential in the left (right) QD The coupling parameter W

is defined as follows

W ≈W01 = 〈0|V0|1〉 ≈W10 = 〈1|V1|0〉, (3)

where V0 and V1 are the confinement potentials in the QWs. Thus, the coupling

W express to overlapping wave functions of the undisturbed state of two separated
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QDs. In the absence of the tunnel coupling, that is when W = 0, the electron can

be located in one or another dot with the energies E1 and E2 corresponding to the

undisturbed states. The Hamiltonian takes the form

H =

(
E0 0

0 E1

)
.

The corresponding Schrödinger equations reads

(H0 + V1)|0〉 = E0|0〉, (H0 + V1)|1〉 = E1|1〉.

Where, H0 is the operator kinetic energy of free electron: −∇(~2/2m∗)∇ and m∗

is electron effective mass.

Diagonalizing the matrix (2), the electron single-particle energies are calcu-

lated27 as

E+, E− =
(E0 + E1)±

√
(E0 − E1)

2
+ 4W 2

2
. (4)

When the energy difference ∆ = |E0−E1| is large and ∆�W , no tunneling occurs.

The minimal value for energy splitting ε between coupled states having energies E+

and E− occurs for the value ∆ = 0 when ε = E+ −E− = 2|W |. At the same time,

this value of ∆ corresponds to maximal energy difference between E+ and E0 (E−
and E1).

The case ∆ = 0 could correspond to identical QDs within the DQD. In Fig. 2,

the diagram plotted in (E,∆) coordinates helps to understand this setting. This

Fig. 2. The anti-crossing in a two-level system as dependence of the energy of levels, E+, E−,
(solid curves) on the deference ∆ of energies E1 and E0, of the corresponding levels for uncoupled

system (red dashed lines).

diagram presents the coupling between of two energy levels as an anticrossing of

levels. When the coupling is absent, the levels are crossed as is showed by dashed

lines in Fig. 2. One can see that, for large ∆, the energies E+ and E− become equal

to E0 and E1. Analysis of Eq. (4) gives the same result.

4. Electron localization in double quantum wells

In this section we present the formalism that allowed us to analyze the electron local-

ization and spectral distributions of localized/delocalized states in double quantum
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Fig. 3. The localization of single electron in DQW: the relation between the coupling parameter

Θ and the ratio 2W/∆ for a confinement level in DQW is given. We show the ranges for localized
and delocalized states of the electron by blue and green highlighting.

wells (DQW) and dots. Note that an experimental detection of the excited states

in DQD has been proposed in Ref.,28 the authors used capacitive charge sensing

to single out such states. It was shown in Ref.,17 that the spectral distributions

of localized/delocalized states are extremely sensitive to the breaking of the DQD

shape symmetry. To explain this statement, we consider electron levels in 1D bi-

confinement potential with the energies E(n), n = 1, 2, 3 . . . listed in increased order

of energy values. The model utilizes the coupling parameter, Θ, which defines the

delocalized (Θ ≈ π
2 ) and localized (Θ ≈0) states of a single electron. This parameter

depends on ∆(n), the difference between energy levels of the left and right DQWs,

the considered spectra are those of separated QWs. In this study, the difference is

caused by a shape symmetry breaking. For one-dimensional two-level system, the

dependence of the localization of a single electron in DQW may be expressed27

by the ratio W (n)/∆(n), where Wn is defined by the wave functions overlaps for

separated QWs and ∆(n) is the energy difference between n-th electron levels in

the spectra of separated QWs:

Θ(n) = arctan(2W (n)/∆(n)), n = 1, 2, 3, . . . . (5)

The dependence of Θ on the ratio 2W/∆ is shown in Fig. 3. Here, the delocalized

state corresponds to a coupling in the QWs. The wave functions of each levels (the

spectral quasi-doublet, defined in Eq. (4)) can be expressed as follows:

|+〉 = |0〉+ tan (Θ/2)|1〉, |−〉 = − tan (Θ/2)|0〉+ |1〉, (6)

were the normalizing constant is arbitrary. The wave functions of the unperturbed

states are noted for ψ1 and ψ2 and indexed by 1 or 2 for separated left and right

quantum wells, respectively. For identical WQs in DQW, each unperturbed energy

level spits to two according to Eq. (4), where E0 = E1. To analyze the electron

localization, we calculate the single electron average coordinate 〈x〉, calculated as

matrix elements:

〈x〉i = 〈i| x |i〉, 〈x〉ij = 〈i| x |j〉, i, j = 0, 1,

which are associated, respectively, with the electron wave functions |i〉 in QW1 and

QW2, considered separate. The x-coordinate origin is chosen to be the mid-point
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of the two QWs. The average coordinate 〈x〉+ and 〈x〉− can be written as:

〈x〉+ = 〈x〉0 + tan2 (Θ/2)〈x〉1 + 2 tan (Θ/2)〈x〉01 (7)

and

〈x〉− = tan2(Θ/2) 〈x〉0 + 〈x〉1 − 2 tan (Θ/2)〈x〉10 (8)

for the corresponding quasi-doublets within the electron spectrum. Single electron

can be localized in one or another QW and 〈x〉+ ≈ 〈x〉0 and 〈x〉− ≈ 〈x〉1.

The sensitivity of the coupling parameter Θ to small variations of ∆ and W is

estimated17 as:

δ(Θ) ∼ − W

∆2 + 4W 2
δ(∆) +

2∆

∆2 + 4W 2
δ(W ), (9)

where W and ∆ are selected from Wn and ∆n, they depend on the quantum num-

bers n.

5. 2D DQD: electron localization and DQD geometry

The numerical analysis discussed in this section concerns electron tunneling in

a typical InAs/GaAs double quantum well. Such a DQW is modeled using the

material and geometric parameters considered above and taking into account either

identical QWs (ideal DQWs) or nearly ideal DQWs (formed by knowingly non-

identical QWs). These two types of DQW geometries differ significantly;17 small

variations of the ideal DQW geometry that break the symmetry drastically distort

the spectral distribution of tunnel states. Our choice of DQD geometry is motivated

by the experimental results of fabricated DQDs described in Ref.,29 where QD pairs

are made mostly ellipsoidal.

In the ideal DQW, the probability for an electron to be in the left QW or in

the right one is, according to Eq. (6), equal to 1/2 for all confinement states of the

DQW. This tunneled state corresponds to the limits ∆ → 0, finite W value, and

the relation W > ∆. This occurs when Θ ∼ π/2 and tan(Θ/2) ∼ 1. The relation

(6) takes the following form of symmetric and anti-symmetric configurations:

|+〉 = |0〉+ |1〉, |−〉 = −|0〉+ |1〉.

Normalization leads to writing the electron probability as:

〈±|±〉 = 〈0|0〉/2 + 〈1|1〉/2

due to orthogonality of the elements of the basis 〈0|1〉 = 〈1|0〉 = 0.

The condition ∆ → 0 relates to the degree of QW similarity within the DQD

system. Realizing this limit, the condition W > ∆ holds for any small value W . It

mathematically means that there is not a limit for inter-dot distance for which the

coherence is lost. Ideally, the wave function of the separated QW is spread every-

where and one can always find non-zero W values. Thus, the ratio 2W/∆ always

goes to infinity when ∆→ 0. The latter means that the delocalized (coherent) state
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does not depend on inter-dot distance in an ideal DQD (see Fig. 3). Obviously, a

realistic consideration does not agree with such ideal model.

The limit ∆ → 0 is a mathematical idealization, for which the spectral distri-

bution of delocalized states corresponds to maximal coherence in the ideal DQW.

However, the ideal system is unstable relatively to small fluctuations. This conclu-

sion flows down from the results of our calculations, where the numerical approx-

imation errors simulate small variations of the parameter ∆ of the almost ideal

DQD. The calculated values include the electron confinement energy and wave

function which are obtained by solving numerically the Schrödinger equation (1).

We use the averaged x-coordinate of electron to definite localization in the DQW

according to Eqs. (7) and (8). The spectral distribution of localized and delocalized

states for symmetric DQW is shown Fig. 4a). For these calculations, we used the

DQW geometry shown in Fig. 1, where both QW1 and QW2 are perfect ellipses

with semiaxes Rx=55 nm and Ry=35 nm and with interdot distance a = 5 nm.

In Fig. 4a), the localized/delocalized states are shown for three different meshes

Fig. 4. a) The ideal DQW: the tunneling in symmetric ellipsoidal DQW: the sizes of the QW1

and QW2 are equal. The results of calculation for different three meshes are shown by dots (Fine

mesh), open circles (Finer mesh), and open rectangles (Finest mesh). b) Schematic deposition of

the QWs in the DQW with relation to the averaged coordinate 〈x〉 of the localized states (dashed
lines). The inter-dot distances a is shown.

chosen for the finite element analysis (FEA). The mesh sizes were chosen to be

fine and up to the full extent of the available computer memory (32GB) and to

the limit of software capabilities in terms of handing meshing nodes. Practically,

the meshes lead inevitably to different geometries for the DQW as well as for each
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Fig. 5. The schematic representation of the QWs (QW1 and QW2, in light blue areas) that are

separated (without a coupling). The extent of the electron wavefunction for ground states are
shown by blue and red circles. The integration in Eq. (3) for W is performed over these circles.

The areas of overlapping (blue and red colors) formed by the confinement potentials (V0 and V1)

and the functions |0〉 and |1〉 give an essential contribution to the integrals (3).

QWs due to finite element approximation for the geometry being studied. The cal-

culations for the largest mesh (Mesh 1) demonstrate domination of the localized

states in the spectrum (black dots). The finest mesh (Mesh 2) appeared to provide

larger delocalizing (red open circles). The energy spectrum of single electron can be

sorted according to electron localization probability. As a result, a set of localized

states (in the left QW or right QW) appear either at around max〈x〉 and min〈x〉,
or around 〈x〉 ∼ 75 and −45 nm, where states have different probabilities of being

in the left and right QWs. The results obtained using Mesh3 (purple dots) are es-

sentially clustered around 〈x〉 = 15 nm indicating that delocalized states become

dominating. The finalized result can be obtained by the smallest possible mesh cell

size, such decrease is numerically limited inherent to the finite elements methods

and computing capability.

To interpret this numerical result, one must examine the coupling W with more

details. In Fig. 5, the graphical representation for Eq. (3) shows the regions of the

integration for the electron wave functions of the ground state. The result of the

integration depends on the overlapping of the wave functions of separated QWs.

The parameters that define this overlapping are the distance between QWs and the

single wave function spillover outside the QW spatial extent, The spillover is energy

level dependent. The wave function spread is due to the asymptotic behavior of the

confined states; such asymptotic behavior is written as:

Ψ(x) ∼ A exp(−b
√
Ec − E x), (10)

where x is the distance from a QW boundary, A and b are constants: these would

depend at most on quantum numbers (e.g., orbital numbers). Here, the Ec definite

the bottom of the quantum well. The effective orbital quantum number defines the

symmetry of wave functions of the electron levels. The integration of the functions

having similar symmetries leads to a similar result. It is visible in Fig. 6 for the

spectral distribution of the averaged coordinate where the tracks correspond to

similar symmetry of the wave functions. The coupling parameter W may depend

on the configuration of the geometry in the QW. For example, an ellipsoidal QWs

produce smaller W value than the circular QWs as a result of the smaller integration

area.
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From the numerical experiment shown in Fig. 4, one can conclude that the DQW

geometry asymmetry leads to weak coupling in the systems. Numerical calculations

were unstable within the finite element approximation. The simple analysis of the

interplay between the coupling parameter W and the spectra energy shift ∆ given

above is appropriate for this situation when the coupling in QDW is weak and W is

small. Eq. (9) helps us to understand the instability of such tunneling. The simple

analysis taking into account that W ≤ ∆ and ∆ ≈ 0 leads to the following relation

δ(Θ) ∼ W

∆2
δ(∆), (11)

which means that small variations of ∆ can produce large variations of the param-

eter Θ that determine the electron localization as well as δ(Θ) ∼ 1
∆δ(∆).

To demonstrate the effect of the symmetry breaking for the electron confine-

ment in DQW, we change the ellipsoidal geometry of the DQW, presented above to

the one when the size of QW1 with the semi-axes ratio (Rx/Ry = 55/35) ) is larger

than the size of QW2 with the ratio (Rx/Ry = 55/34.75). The QW horizontal axes

are shifted by s = 1 nm. The results of the calculations for asymmetric DQW are

Fig. 6. The tunneling in almost ideal DQW: asymmetric ellipsoidal dots (size of QW1(Rx/Ry =

55/35) ) is larger than the size of QW2(Rx/Ry = 55/34.75). The QW horizontal axes are shifted

by s=1 nm. Open and close circles show the results related to the variations of the solver mesh.

shown in Fig. 6 where the Mesh2 and Mesh3 from previous calculations for ideal

DQW have been used. Comparing this result and results for the ideal case, we can

conclude that the asymmetric case is numerically more stable, and converges more

rapidly. TThe effect of the mesh variations is not clearly discernable. However, in

this case, the localized states dominate the spectrum. Thus, an asymmetry within

the DQW plays a significant role as it hinders and even blocks the electron tunnel-

ing. For non-identical QDs in DQD, when ∆(n) > 0 and W (n) is small, the ratio

(5) strongly depends on the strength the coupling W (n) that determines the spec-

tral distribution of the tunneling. Generally, due to W (n) being small, the localized

states dominate according to the relation W (n)/∆(n) ∼ 0. From fig. 6 we can con-

clude that the spectral distribution for localization of the electron corresponds to
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the dependence of W (n) on the quantum number n numbering the spectral levels.

One can separate sets of energy levels with similar tunneling strengths. These sets

are formed by similar spatial distribution of the wave function, which depends on

quantum numbers (e. g., radial and orbital quantum numbers). Variations in the

electron localization depending on the change in the parameter W are also shown in

Fig. 4. Note, here that the inter-dot distance could be the input parameter, which

affects the coupling strength W more significantly. The integrals in Eq. (3) depend

on the wave function overlap of separated QWs as shown in Fig. 5. The parame-

ters that define this overlap are the distance between QWs and the spillover of the

single wave function outside of the QW shape region, which depends on the energy

of the considered level and the symmetry of the wave function. The wave function

spread is due to the asymptotic behavior of the confined states given by Eq. (10).

The asymptotic dependence on a quantum number (e.g., orbital numbers) results

in regular located traces in Figs. 4 and 6. It can be shown that the value of the

logarithm of the tunneling rate ln(ε) depends on the energy as a linear function

of
√
E. The tunneling rate ε is correlated to the coupling coefficient Wn. We can

conclude that the contrast between ideally symmetric DQW and asymmetric one

is the strong dependence of the tunneling on inter-dot (well) distance. In an ideal

case, the inter-dot distance is irrelevant as it does not affect the tunneling.

Further analysis of the ellipsoidal QW considers variations of the ∆. To that end

two sets of geometry parameters are used. For the set, the semi-axis ratio Rx/Ry is

considered t be 55/35 for QW1 and 55/34.90 for QW2; the relative shift s along the

horizontal axis is 1 nm. The second set has the same semi-axis ratio parameters for

QW1 (i.e. 33/35), but for QW2, it is chosen to be 55/34.75, while s is considered

−2 nm. The first set is closest to symmetric DQW. The results of calculations are

given in Fig. 7, wherein a) the first DQW (the closest to the ideal case) corresponds

to a larger degree of delocalization in the spectrum than the second DQW with a

larger geometry difference.

The energy difference ∆ of the spectra of the separated QWs for these two

variants of QDW geometry is presented in Fig. 7b). The tunneling is a concurrent

effect of the interplay between W and ∆, both conveying the asymmetry of the two

QDs. However, in this numerical experiment, the small variations ∆ can affect the

tunneling more significantly. The tracks which are visible in Fig. 7a) separate the

values 2W (n) according to the spatial symmetries of corresponding wave functions.

These tracks for both cases are similar. However, the values ∆(n) are larger for more

dissymmetrical DQW. According to Eq. (5) and Fig. 3, it means that the corre-

sponding delocalization is weaker and states are closer to delocalization ones. One

can see it in Fig. 7a) for the low-lying energy levels, where this is clearly demon-

strated. For the higher levels, this difference is mainly saved, however, increasing

the values of ∆(n) may be compensated by W (n) increasing that corresponds to a

more spatially distributed wave function.

In our next numerical experiment, we decreased the semi-axes of the ellipsoidal
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Fig. 7. a) The tunneling in ellipsoidal DQW with increasing asymmetry. Two set geometry pa-
rameters of the DQW were chosen. The solid circles are related to the first DQW (the set where

Rx/Ry = 55/34.75 and s = 1 nm for QW2). The open circles are for the second DQW (the set

where Rx/Ry = 55/34.90 and s = −2 nm for QW2). b) The energy shift ∆ of separated QW
spectra for these two sets of QDW geometry.

Fig. 8. The electron localization of two lowest states of the spectrum (lowest quasi-doublet) for
different values of the inter-dot distance a. The results of calculation for 〈x〉/b are shown by

different symbols. The values of a are given in the legend, b is normalizing constant: b = a+2Rx. a)

The almost ideal DQW: the asymmetry of the DQW is induced by numerical FEM approximation
on the finite mesh so that ∆ < 10−10 eV. The spherical-shaped QWs have radii of 15 nm. b) The
asymmetry of the DQW is defined by the ratio Rx/Ry = 15/14.5 for semi-axes of the right QW.

Here, the value E0 and E1 are pointed out to show ∆.

QWs to the values Rx/Ry = 15/15 for the left QW and Rx/Ry = 15/14 for the

right QW. The change leads to increasing the coupling W . We calculate the electron

localization in the lowest quasi-doublet of the spectrum for different values of the

inter-dot distance a. The localization was evaluated by the averaged electron x-

coordinate. The results of the calculations are shown in Fig. 8. In Fig. 8a), the

geometry asymmetry of the DQW is induced by numerical FEM approximation on

the finite mesh so that ∆ < 10−10 eV. We define this DQW as an almost ideal



October 20, 2023 10:35 WSPC/INSTRUCTION FILE manuscript˙mplb˙6

Effect of Double Quantum Dot Asymmetry on Electron Localization 13

one. The ground state is a delocalized state up to a < 20 nm, which disagrees

with previous our calculations for larger size ellipsoidal QWs with strong semi-axes

deferences. In Fig. 8b), the asymmetry of the DQW is determinate by the ratio

Rx/Ry = 15/14.5 for semi-axes of right QW. The value for ∆ can be graphically

evaluated by the corresponding values E1 and E2 in the figure. The case of separated

QWs corresponds asymptotically to the case of the largest inter-dot distance of 5 nm

according to Eq. (4) for W ∼ 0.

The significant inter-dot distance dependence of electron localization is obvi-

ously related to the high sensitivity of the matrix element W on the distance a as

we have explained above. The cases of almost ideal DQW and the case of DQW

with geometry-induced asymmetry are different by the values of the ∆. The smaller

∆ generates a bigger value of the ratio W/∆ and provides a delocalized state of an

electron for larger a.

6. 2D DQD: modeling a charge qubit

Based on our approaches, we can propose an interpretation for the DQD-based

charge qubit.7,30–35 We have shown in previous sections that the tunneling in a

two-level system, exactly like in the DQD, is sensitive to fluctuations according to

Eq. (5) and resulted by a concurrent effect of ∆ and W . Thus, the tunneling in a

DQD based qubit would be affected by any fluctuations of ∆ and W , both can lead

to loss of coherency of the qubit. The ideal coherence is defined in a DQD where

the probability for an electron to be in the left QD or in the right is about 1/2 for

all possible states of the DQD. This qubit state corresponds to the limits ∆ → 0

and W > ∆; these occur in a range of Θ ∼ 0, where the relation tan(Θ/2) ∼ 1 and

the probability is close to 1/2. The limit ∆→ 0 is a mathematical idealization, for

which the spectral distribution of tunneling states in such ideal DQD corresponds

to maximal coherence. However, the charge qubit initial state has to be weakly

coupled and localized to realize binary logic. In this state, almost deal system is

unstable relatively to small fluctuations. This conclusion flows down from the results

of our calculations, where the numerical errors simulate the small variations of input

parameters of the almost ideal DQD.

More realistic consideration is related to finite values of ∆. A simple case to

mention is when ∆ 6= 0 may be induced by a geometrical asymmetry in DQD. The

large ∆ is appropriate to produce the initial state of a qubit as a localized state.

To provide a large value for the ratio W/∆ and stable coherence, the value W has

to be large so that W > ∆ is always verified. Thus, there is apposite situation for

the initial state (localized) and working state which must be delocalized.

The DQD-based charge qubit is stimulated by an electrical pulse7 which leads

to tunneling (coherence) in DQD. For fabricated DQD, the energy difference ∆ of

the initial state is unrecoverable and this state can be a localized state, which might

be caused by, for example, a relatively large inter-dot distance (small W ) and large

value of the ∆. This realistic situation is schematically illustrated in Fig. 9; wherein
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Fig. 9. The confinement states (E1 and E2) of a single electron in separated QDs (QD1 and QD2):

a) without and b) with an electrical pulse. The energy shift is ∆ = E2 − E1. Here, we assume
that ∆′ < ∆ is due to the bias of the confinement potential in the electrical field. The fine dashed

contour demonstrates non-similarity of the QDs.

a) there is no tunneling and the separated QDs energy levels are shown. During

the electrical pulse, the bias of the confinement potentials takes a place, as shown

in Fig. 9b) schematically. That makes a possibility for electron tunneling due to

decreasing of the ∆ and an increase of W due to the reduction of the depth of the

quantum wells. In the last case, the corresponding energy levels become closer to

the upper edge of the wells and the wave functions take more space around the

centers of the QWs. We consider that the ∆′ gets smaller than ∆. Thus, the large

value for the ratio W/∆ is provided which means domination of the delocalized

states and coherence in DQD. The coherence will be kept during the pulse. The

form of the electric pulse can be found in Ref.7 In this model, it is assumed that

the fast pulse acts on the QDs in a non-adiabatic way.

We have seen, that small ∆′ increases the coherence in DQD. However, electrical

field fluctuations during the pulse can give different causal values for ∆′. When

∆′ ≈ 0, the effect of the fluctuation on the coherence may be large if the value

of the W is enough small which means the coupling is weak. In another word,

unstable tunneling in DQD corresponds to the case when W � ∆′ according to

Eq. (11). The tunneling will be stable when the W is relatively large W � ∆′

which corresponds to strong coupling in DQD. Our next numerical simulation is

dedicated to the relation between W and ∆.

We consider DQW with the asymmetry defined by the ratio Rx/Ry = 15/14

for semi-axes of right ellipsoidal shaped QW. The left QW has a spherical shape

with a radius of 15 nm. The inter-dot distance was chosen as a = 4 nm to provide

an electron localized state in the initial state. To simulate the electric pulse, we

make an energy correction Ve for the effective potential Vc in the right QW so

that V ′c = Vc − Ve. Increasing the value Ve, one can find the position of resonance

tunneling when the electron state becomes delocalized. This position corresponds to

the anti-crossing of the levels of a quasi-doublet. In Fig. 10, we present our results

of the simulation. The dependence of the energy of the lowest quasi-doublet on

the correction Ve demonstrates the anti-crossing in Fig. 10 (Upper panel). In the

lower panel of the figure, we show the effect of the anti-crossing on the electron

localization. In the central point of anti-crossing, when Ve = 1.45 meV, the electron
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Fig. 10. (Upper panel) The dependence of the energy of the lowest quasi-doublet on the energy
correction Ve for the effective potential Vs in the right QW: V ′s = Vs − Ve. The considered DQW

asymmetry defined by the semi-axes ratio Rx/Ry of right QW is 15/14. The inter-dot distance
a was chosen to be 4 nm. The circular (square) dots show the results of calculation for lower

member of the quasi-doublet (upper member). The solid lines show the imaginary crosse of the

levels. (Lower panel) The normalized cross-section of electron wave functions at the ground state
in DQW for different Ve. The labels A, B and C correspond to the Ve value in the upper panel

(vertical dashed lines).

is delocalized with equal probability in both QWs. This probability becomes to

asymmetric one when the Ve is going from the central value (point B). It looks like

the electron change localization under the increasing of Ve from left QW (point A)

to right QW (point C).

In our model for the charge qubit, the initial localized state is reached when

the inter-dot distance a is equal to 4 nm and more. For shorter distances, the

delocalization is begun. We calculate the dependence of the electron localization

on variations of a. The results are presented in Fig. 11, where the degree of the

localization is expressed by the averaged x-coordinate and deviation of energy from

averaged energy Eav = (E− + E+)/2. The electron states of the lowest spectral

quasi-doublet are considered for the modeling. The result in Fig. 11a) is interpreted

as follows: the value of W rapidly decreases to zero, while ∆ is large. This provides

delocalized states for large distances. The energies E− and E+ approach to E1 and

E2, asymptotically. In Fig. 11b), we show the results of the same calculations under

the pulse simulated by Ve = 1.45 meV acting in the right QW. The electron state

is delocalized one up to the value of 6 nm for the a. We can interpret Fig. 11 using

the relation between W and ∆. In Fig. 11a), at short distances when a < 4 nm, the
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Fig. 11. The averaged coordinate 〈x〉/b (solid squares) and electron energy (E − Eav.) (open

squares) of lowest quasi-doublet for different values of the inter-dot distance a in an asymmetric

DQW. The asymmetry of the DQW is defined by the ratio Rx/Ry = 15/14 for semi-axes of right
QW. The calculation results are shown by different symbols. The values of a are given in the

legend, b is normalizing constant: b = a+ 2Rx. a) Ve = 0. b) Ve = 1.45 meV.

W is large and quickly decreased. At the same time, the ∆ is about zero. The ratio

W/∆ is large and the electron is delocalized. For larger distances when a > 6 nm,

the competition between W and ∆ leads to localized states due to small W and

W � ∆, where the ∆ is small but finite. Our modeling for the electrical pulse gives

stable coherence of the charge qubit due to increasing the ratio W/∆, where W is

initially weak coupling. This increase of tunneling is provided by decreasing ∆ to

small values of ∆′. However, as we have seen above in Eq. (11), the tunneling can

be potentially unstable when W ≤ ∆ and ∆ ≈ 0 due to the sensitivity of tunneling

on the ∆ variations is proportional to 1
∆ .

Now, we can consider an almost ideal DQW to definite one more realization for

a stable qubit. An example, we can remember the ion of H+
2 where two identical

protons are bound by an electron, interacting with the Coulomb potential. The

idealization allows us to propose a stable qubit. The results of corresponding calcu-

lations are presented in Fig. 12. Coherence in DQWs at large inter-dot distances is

ensured by the similarity of QWs. We have illustrated this in Fig. 8. The averaged

coordinate 〈x〉/b (where b = a+ 2Rx) is close to zero value and electron energies of

the quasi-doublet are the same with the accuracy of 10−10 eV. That is the result of

the numerical FEM approximation on the finite mesh. In Fig. 12a), the correction

Ve for Vs potential in the right QW (a pulse) leads to the loss of the almost ideal

coherence. The quasi-doublet members are separated by energy and degree of lo-

calization due to large ∆. For short inter-dot distance a, the ∆ is comparable with

W and we see a partial delocalization. When the a is large the relation W << ∆

is satisfied and the electron states are localized. It can be an initial state of the

qubit. The coherence state is produced when the correction Ve is switched off. The

graphical description of the model is shown in Fig. 12b).
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Fig. 12. a) The averaged coordinate 〈x〉/b (solid squares) and electron energy (E − Eav.) (open

squares) of lowest quasi-doublet for different values of the inter-dot distance a in almost ideal

DQW. The radii of the circle-shaped QWs are 15 nm. The asymmetry of the DQW is induced by
geometry approximation inherent to FEM, since the mesh finesse is limited (∆ < 10−10 eV). The

Vs potential is corrected by Ve=1.45 meV in the right QW, and the horizontal line corresponds

to the results obtained with Ve=0. The remaining notations are the same as those used in Fig.
11. The dashed vertical line separated two regions where W ≈ ∆ and W � ∆. b) The schematics

diagram for the qubit based on the almost ideal DQD. The electrical pulse (pulse) changes the

confinement (in red color) in the right QD so that the energy level E2 is shifted by the value ∆′

where ∆′ � ∆. The small ∆ is not shown. The fine dashed contour demonstrates an arbitrary

geometry for these similar QDs.

For practical realization, the QW must be almost identical. This is the hard

problem of fabrication. The future modeling including different materials can allow

approaching to almost ideal DQW. For example, the shallow electron confinement

leads to a large value W that forced the coupling and make a weaker condition for

the similarity of QWs. The same effect is obtained by decreasing the size of QWs.

The results of such calculations are presented in Fig. 13. We reduced the radii of

QWs to 5 nm. The inter-dot distance was chosen to be 4 nm. The asymmetry of the

DQW is simulated by decreasing the semi-axes of right QW R′y = Ry−κ/100, where

the parameter κ is increased from zero value. The initial state κ = 0 is delocalized

one with the probability of 1/2 for an electron to be in the left or the right QW.

Increasing κ leads to the breaking of the ideal coherence. However, this breaking

is not significant up to κ ≈5 nm. In this region, the relation W > ∆ has to take

place. A more strong violation of the geometry symmetry leads to increasing of ∆

and decreasing W . So that the relation W < ∆ is satisfied. The state of an electron

becomes to localized one when κ > 30 nm Thus, the DQW keeps a coherence with

asymmetry up to 5%. We can increase this limit by increasing the coupling W . It

can be done for example by reducing the size, topology or material composition of

the QWs.

The environmental induced fluctuations are mainly related to W . The environ-
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Fig. 13. a) The effect of geometry asymmetry in almost ideal DQW. The radii of the circle shaped
QWs are 5 nm. The asymmetry of the DQW is simulated by decreasing the semi-axes of right

QW: R′y = Ry − κ/100 where the parameter κ is varied. Other notations are similar to the ones
used in previous figure. The dashed vertical line separates the region where W > ∆ from that

where W < ∆.

ment media interacting with the electron in DQD distorts the wave functions and

changes the matrix elements W . The complex competition of the two factors ∆ and

W reduced to the dependence of the coherence on W . We have seen that for differ-

ent symmetries of wave functions of different spectral states produce clear picture

of the W influence on the tunneling in DQW. An essential decreasing of W leads

to lost of the coherence.

The effects of the environmental fluctuations of the pulse in the charge qubit

have been formalized in Refs.,36–38 where the dephasing of a superconductor qubit

was investigated. The wave function taking into account the dephasing can be

represented by the formula: |0〉+βeiφ(t)|1〉, where the pre-factor of the eiϕ(t) phase

term can be described by a Gaussian distribution that expresses the fluctuations.

Our analysis is in agreement with this phenomenological formalization.

7. Conclusions

The localization of a single electron in two-dimensional binary quantum systems was

numerically studied using the effective potential model for InAs/GaAs nano-sized

heterostructure. The emphasis was on the differences between the system elements

(subsystems). The effect related to the breaking of similarity of the subsystems has

been discussed. Prior considerations of such systems were limited to symmetrical

shapes of identical QDs.

The variation of similarities were controlled and symmetrical versus asymmetri-
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cal shapes of QWs within DQW were studied. To that end the energy of confinement

states E(n), n = 0, 1 . . . , and the spatial localization of a single electron, detected

by averaged coordinate x of the electron the DQW, were calculated. The effect of

symmetry breaking on localization is explained in terms of the theory of two-level

systems. To explain our results, an elementary introduction to the theory was pro-

vided. Two key parameters that affect the electron localization were identified; the

first one, Wn, is the overlap of the wavefunctions of separated QWs, and the sec-

ond one, ∆n, is the energy difference for n-th electron levels in the spectra of the

separated QDs.

We showed that the ratio Wn/∆n determines the spectral distribution of the

localized/delocalized states in DQW. The concurrent effects of W(n) and ∆(n)

on the electron localization is shown by variations of the DQD geometry. We can

conclude, that the spectral distribution of the electron tunneling demonstrates high

sensitivity to the DQW geometry variations.

We considered the strong and weak coupling of QWs. These are delineated

through relation between W and ∆: W > ∆ for the strong coupling, and ∆ ≈ 0,

W < ∆ for the weak coupling. In particular, we showed for an ideal DQW that

the electron coupling of QWs can be unstable for any small violation of the sym-

metry, even when ∆ → 0, As example of weak coupling in the ideal DQW, we

have presented numerical calculations with variable finite element meshes. The set

of meshes generates variations of the ∆. The corresponding distributions of local-

ized/delocalized states demonstrate unstable tunneling for relatively small varia-

tions of ∆. At the same time, the coherence in ideal DQW was found to be inde-

pendent of the inter-dot distance.

Our approach based on a study of localized/delocalized states in DQW can

be used for study of limitations for the stability of charge qubits. We simulated a

charge qubit in which the effect of the electrical field is used to ensure the coherence

of the qubit. The relation between W and ∆ in establishing the qubit coherence

was shown. The decreasing of the value of ∆ under the pulse gives stable coherence.

Based on our modeling, the fluctuations of electric pulse can result in variations of

the energy shift ∆. It must be noted also that establishing strong coupling is impor-

tant due to the environmental fluctuations impact the symmetry of bi-confinement

in the DQW and can result in fluctuations of overlapping integral W that led to

loss of coherence.

Ultimately one should consider a qubit, based on almost ideal DQW. As a means

for controlling the qubit, and its coherence, one can use pulses of other nature than

electric pulses. The pulse can generate binary logic. The coherence is established

due to the almost ideal property of this DQW and a pulse will not be needed.

However, the problem of environmental influence remains has to be addressed in a

different way.
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