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Abstract. We investigate two-band superconductivity in ultrasmall grain. The Richardson’s
exact solution is extended to two-band systems, and a new coupled equation is derived accord-
ing to the procedure of Richardson’s works. Parity gap and condensation energy of ultrasmall
two-band superconducting grain are numerically obtained by solving the coupled equations.
We discuss these properties in ultrasmall grain in relation to the correlation, interband inter-
action, and size dependence.

1. Introduction

Black et. al. have revealed the presence of a parity dependent spectroscopic
gap in tunnelling spectra of nanosize Al grains (Black, 1996; Ralph, 1995).
Many groups have theoretically investigated the physical properties, such
as critical level spacing, condensation energy, parity gap, etc. of ultrasmall
grains of conventional superconductors (Jankó, 1994; Delft, 1996; Smith,
1996; Matveev, 1997; Braun, 1998; Delft, 1999; Gladilin, 2002). The ques-
tions arising from the nanosize of superconducting grains have first been
discussed by Anderson (Anderson, 1959). The standard BCS theory fails
when the level spacing approaches the superconducting gap. To investigate
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the properties in such nanosize systems, it is necessary to take more ac-
curate treatment. Braun and von Delft (Braun, 1998; Delft, 1999; Braun,
1999; Sierra, 2000) have reintroduced the exact solution to the reduced BCS
Hamiltonian developed by Richardson (Richardson, 1963; Richardson, 1964;
Richardson, 1965; Richardson, 1966). It is noteworthy that the Richardson’s
solution is applicable at distributions of single-electron energy level. V. N.
Gladioli et. al. (Delft, 1999) have investigated the pairing characteristics such
as condensation energy, spectroscopic gap, parity gap, etc. by using the
Richardson’s exact solution for the reduced BCS Hamiltonian.

Recent discovery of superconductivity of MgB2 (Nagamatsu, 2001) with
Tc = 39 K has also been much attracted great interest for elucidation of its
mechanism from both experimental and theoretical view points. Since this
discovery, the possibility of two-band superconductivity has also been dis-
cussed in relation to two gap functions experimentally and theoretically. Two-
band model has been introduced by several groups (Suhl, 1959; Moskalenko,
1959; Kondo, 1963). Recently, two-band or multi-band superconductivity has
been theoretically investigated in relation to superconductivity arising from
coulomb repulsive interactions and the possibility of new superconductivity
arising from new mechanisms with higher transition temperature (Konsin,
1988; Yamaji, 1994; Combescot, 1995; Konsin, 1998; Nagao, 2000.2; Kondo,
2001; Kondo, 2002; Nagao, 1999; Nagao, 2002.1; Nagao, 2002.2; Nagao,
1997; Nagao, 1998; Nagao, 2000.1).

In this paper, we investigate two-band superconductivity in ultrasmall
grain. The Richardson’s exact solution is extended to two-band systems, and
new coupled equation is derived according to the procedure of Richardson’s
works. Parity gap and condensation energy of ultrasmall two-band super-
conducting grain are numerically given by solving the coupled equation. We
discuss these properties in ultrasmall grain in relation to the correlation, in-
terband interaction, and size dependence.

2. Exact solution for two-band superconductivity

In this section, we derive an exact solution of two-band superconductivity for
reduced BCS Hamiltonian.

2.1. HAMILTONIAN

We consider a Hamiltonian for two bands 1 and 2 written as

H =
∑

jσ

ε1 ja
†
jσa jσ − g1

∑
jk

a†j↑a
†
j↓ak↓ak↑ +

∑
jσ

ε2 jb
†
jσb jσ − g2

∑
jk

b†j↑b
†
j↓bk↓bk↑

+g12

∑
jk

a†j↑a
†
j↓bk↓bk↑ + g12

∑
jk

b†j↑b
†
j↓ak↓ak↑ . (1)
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Figure 1. Two band system and parameters in Hamiltonian.

The first line of Eq. (1) corresponds to the reduced BCS Hamiltonian for
bands 1 and 2. The third line means a coupling between them and corresponds
to the pair scattering process between these two bands (see Fig.1). a†jσ (a jσ)

and b†jσ (b jσ) are the creation (annihilation) operator in band 1 and 2 with
spin σ and the single-particle levels ε1 j and ε2 j, respectively. The sums of j
and k are over a set of N1 states for band 1 with fixed width 2�ω1D and a set
of N2 states for band 2 with fixed width 2�ω2D, respectively.

In this study, we assume that the Debye energies for two bands coincide
with each other as

ω1D = ω2D = ωD . (2)

The interaction constants g1 and g2 can be written as

g1 = d1λ1 , g2 = d2λ2 , (3)

where d1 and d2 mean the mean single-particle level spacing,

d1 = 2�ωD/N1 , d2 = 2�ωD/N2 , (4)

and λ1 and λ2 are dimensionality interaction parameters for two bands. We
define the inter-band interaction constant as

g12 =
√

d1d2 λ12 . (5)

The system we are considering consist of two half-filled bands, each of
which has equally spaced Nn single-particle levels and Mn (= Nn/2) doubly
occupied pair levels (n = 1, 2). We take as our unit of energy the single-
particle level spacing. Thus, the single-particle spectrum is given by

εn j = dn j − ωD , j = 1, 2, · · · ,Nn (n = 1, 2) . (6)
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Richardson had solved for the single band model for arbitrary set of
single-particle levels. For simplicity, we assume that there are not singly
occupied single-particle levels. As can be seen from Eq. (1), these levels
are decoupled from the rest of the system. They are said to be blocked and
contribute with their single-particle energies to the total energy. The above
simplification implies that every single-particle level j is either empty (i.e.
|vac〉), or occupied by a pair of electrons (i.e. a†j↑a

†
j↓‖vac〉 and b†j↑b

†
j↓|vac〉).

These are called as unblocked level.

2.2. EXACT SOLUTION

In order to extend Richardson’s solution into the two-band system, we define
two kind of hard-core boson operators as

c j = a j↓a j↑ , c†j = a†j↑a
†
j↓ , d j = b j↓b j↑ , d†j = b†j↑b

†
j↓ . (7)

The Hamiltonian Eq. (1) for the unblocked levels can be then written as

HU = 2
N1∑
j

ε1 jc
†
j c j − g1

N1∑
jk

c†j ck + 2
N2∑
j

ε2 jd
†
j d j − g2

N2∑
jk

d†j dk (8)

+g12

N1∑
j

N2∑
k

c†jdk + g12

N2∑
j

N1∑
k

d†j ck .

We shall find the eigenstates |M1; M2〉 of this Hamiltonian with M1+M2 pairs
in the following form as

HU |M1; M2〉U = E(M1; M2)|M1; M2〉U =
⎛⎜⎜⎜⎜⎜⎜⎝

M1∑
J=1

E1J +

M2∑
K=1

E2K

⎞⎟⎟⎟⎟⎟⎟⎠ |M1; M2〉U ,
(9)

where E(M1; M2) is the eigenvalue and

|M1; M2〉U =
M1∏
J=1

C†J
M2∏

K=1

D†K |vac〉 , (10)

and

C†J =
N1∑
j

c†j
2ε1 j − E1J

, D†J =
N2∑
j

d†j
2ε2 j − E2J

. (11)

Now, we define C†0 and D†0 as

C†0 =
N1∑
j

c†j , D†0 =
N2∑
j

d†j , (12)
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then, we can rewrite Eq. (8) as

HU = 2
N1∑
j

ε1 jc
†
j c j − g1C†0C0 + 2

N2∑
j

ε2 jd
†
j d j − g2D†0D0 (13)

+g12C†0D0 + g12D†0C0 .

Using these new operators, we find

HU |M1; M2〉U =
⎛⎜⎜⎜⎜⎜⎜⎝

M1∑
J=1

E1J +

M2∑
K=1

E2K

⎞⎟⎟⎟⎟⎟⎟⎠ |M1; M2〉U

+C†0
M1∑
J=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
N1∑
j

g1

2ε1 j − E1J
+

M1∑
J′�J

2g1

E1J′ − E1J

⎞⎟⎟⎟⎟⎟⎟⎟⎠ |M1(J); M2〉U

+D†0
M1∑
J=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
N1∑
j

g12

2ε1 j − E1J
−

M1∑
J′�J

2g12

E1J′ − E1J

⎞⎟⎟⎟⎟⎟⎟⎟⎠ |M1(J); M2〉U (14)

+C†0
M2∑

K=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
N2∑
j

g12

2ε2 j − E2K
−

M2∑
K′�K

2g12

E2K′ − E2K

⎞⎟⎟⎟⎟⎟⎟⎟⎠ |M1; M2(K)〉U

+D†0
M2∑

K=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
N2∑
j

g2

2ε2 j − E2K
+

M2∑
K′�K

2g2

E2K′ − E2K

⎞⎟⎟⎟⎟⎟⎟⎟⎠ |M1; M2(K)〉U ,

where

|M1(L); M2〉U =
L−1∏
J=1

C†J
M1∏

J′=L+1

C†J′
M2∏

K=1

D†K |vac〉 , (15)

|M1; M2(L)〉U =
M1∏
J=1

C†J
L−1∏
K=1

D†K
M2∏

K′=L+1

D†K′ |vac〉 . (16)

Comparing Eq. (14) with Eq. (9), for arbitrary J and K we obtain

(
C†0 D†0

) ( 1 + g1A1J −g12A2K

−g12A1J 1 + g2A2K

) ( |M1(J); M2〉U
|M1; M2(K)〉U

)
= 0 , (17)

where

AnL = −
Nn∑
j

1
2εn j − EnL

+

Mn∑
L′�L

2
EnL′ − EnL

. (18)

Non-trivial solution of Eq. (17) is derived from a determinantal equation;

FJK = (1 + g1A1J) (1 + g2A2K) − g2
12A1JA2K = 0 . (19)
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This constitutes a set of M1 + M2 couples equations for M1 + M2 parameters
E1J and E2K (J = 1, 2, · · · ,M1; K = 1, 2, · · · ,M2), which may be thought of
as self-consistently determined pair energies. Equation (19) is exact eigen-
value equation for two-band superconducting system, and can be regarded as
a generalization of the Richardson’s original eigenvalue equation.

2.3. PREPROCESSING FOR NUMERICAL CALCULATION

To remove the divergences from the second term of AnL in Eq. (18), we make
changes of energy variables.

En2λ = ξnλ + iηnλ , En2λ−1 = ξnλ − iηnλ , λ = 1, 2, · · · ,Mn/2 , (20)

where we assume that the number of pairs is even. Since complex pair ener-
gies appear in complex conjugate pairs, the total energy is kept in real.

A further transformation is necessary in order to remove the divergences
from the first term of AnL. We define new variables xnλ and ynλ as

ξnλ = εn2λ + εn2λ−1 + dnxnλ (xnλ ≤ 0) , (21)

η2
nλ = −

{
(εn2λ − εn2λ−1)2 − d2

n x2
nλ

}
ynλ (ynλ ≥ 0) . (22)

Then, we can rewrite FJK by using new variables and extract the real and the
imaginary part as

F+λλ′ =
1
2

(
Fλλ′ + F∗λλ′

)
, F−λλ′ =

1
2i

(
Fλλ′ − F∗λλ′

)
. (23)

Therefore, for arbitrary combination of λ and λ′ we solve the following equa-
tions;

F+λλ′ = 0 , F−λλ′ = 0 (λ = 1, 2, · · · ,M1/2; λ′ = 1, 2, · · · ,M2/2) . (24)

3. Results and discussion

We now apply the exact solution for two-band system to discuss properties
of the two-band superconducting in ultrasmall grain. The single-particle level
patterns of (2M1 + m) + 2M2 electron system (m = 0, 1, and 2) that we are
considering are represented in Figs. 2(a), (b), and (c), respectively. As seen
these figures, the additional electrons first occupy the band 1, then the band 2.
And numerical calculations given below are carried out under the condition
that N1 : N2 = 3 : 2.
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Figure 2. Single-particle levels near the Fermi level in a two band superconductivity. The dot-
ted lines mean the chemical potential. The left and right bands are band 1 and 2, respectively.
d1 and d2 are the mean level spacings. (a) 2M1 + 2M2 electron system, where Mn is a number
of pair levels. (b) (2M1 + 1) + 2M2 electron system. (c) (2M1 + 2) + 2M2 electron system.

Figure 3. Typical behavior of pair energy levels of two bands for the ground state. Parameters
used in calculation are N1 = 12, N2 = 8, M1 = 6, M2 = 4, �ωD = 50, 0 < λ = λ1 = λ2 ≤ 1.0,
and λ12/λ = 0.2. Solid and broken lines are corrspond to the pair energy levels of the band 1
and the band 2, respectively.

3.1. PAIR ENERGY LEVEL

By minimizing the sum of squares of Eq. (24) for various interaction parame-
ters, we obtain a behavior of pair energy levels EnJ of two bands as shown in
Fig. 3.

As seen in the figures, the band 2 condenses into degenerate levels, but
the band 1 does not. In general, we can expect that the single-particle levels in
band of which mean level spacing d is larger than the other band degenerate
faster. The behavior of the condensing band is qualitatively the same as that
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Figure 4. Condensation energy. Parameters used in the calculations are �ωD = 50, and

λ = λ1 = λ2 = 0.5. Values are normalized by the bulk gap, Δ = ωD sinh−1
(

λ

λ2−λ2
12

)
. The solid

and broken lines correspond to the condensation energy for the band 1 and 2, respectively.
Lines plotted by squares, by triangles and by circles are for 2M1 + 2M2 electron system, for
(2M1+1)+2M2 electron system, and for (2M1+2)+2M2 electron system, respectively. (a) The
condensation energy for the interband coupling parameter λ12 = 0.01. (b) The condensation
energy for λ12 = 0.1.

for the case of calculation for the single band (Delft, 1999). The co-existence
of the normal band and the condensed one may be reflected in the opposite
phase of the gaps of these bands (Nagao, in press).

3.2. CONDENSATION ENERGY

The condensation energy of band n for (2M1 +m)+ 2M2 electron system can
be defined as

EC
n (2M1+m, 2M2) = En(2M1+m, 2M2)+

(
Mn +

m
2

)
gn−E0

n(2M1+m, 2M2) ,

(25)
where En(2M1 +m, 2M2) and E0

n(2M1 +m, 2M2) are the ground state energy
and the sum of the single-particle energy, respectively.

We calculate the condensation energies and show in Figs. 4(a) and (b). As
seen in the figures, we can understand that the band 2 condenses, but the band
1 does not because of the sign of values. This difference of sign may also be
reflected in the opposite phase of the gaps of these bands. The behaviors of
the results for the condensed band (band 2) are qualitatively the same result
as the case of the single band calculation. That of the condensation energy
of band 2 for (2M1 + 2) + 2M2 electron system is, however, different from
the others. We can also see that the condensation energy is affected by the
interband interaction λ12 (Nagao, in press).
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Figure 5. Parity gap. Parameters used in calculation are �ωD = 50, and λ1 = λ2 = 0.5. The
solid and broken lines correspond to the parity gap for the band 1 and 2, respectively. Lines
plotted by triangles and by squares are for the interband coupling parameter λ12 = 0.01 and
for λ12 = 0.1, respectively. Values are normalized by the bulk gap.

3.3. PARITY GAP

The parity gap of band n is defined as

Δ
p
n = En(2M1 + 1, 2M2) − 1

2
{En(2M1, 2M2) + En(2M1 + 2, 2M2)} , (26)

which has been introduced by Matveev and Larkin and characterizes the
even-odd ground state energy difference (Matveev, 1997).

The parity gaps we have calculated are shown in Fig. 5. For the condensed
band, we obtain qualitatively the same result as the case of the single band
calculation, i.e. there is a minimal point and a tendency toward 1 for d → 0.
The mean level spacing giving the minimal point is, however, much less than
that for the single band. The parity gap is almost independent upon the inter-
band interaction λ12. This is also mentioned in our previous work (Nagao, in
press).

4. Conclusions

We have extended the the Richardson’s exact solution to the two-band system,
and have derived a new coupled equation. To investigate the properties of the
two-band superconductivity, we have solved the equation numerically, and
have given the behavior of pair energy levels, the condensation energy, and
the parity gap.
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The band of which mean level spacing is larger than the other band de-
generates and condenses faster. The behavior of the condensing band is qual-
itatively the same as that for the case of calculation for the single band. The
co-existence of the normal band and the condensed one may be reflected in
the opposite phase of the gaps of these bands. This phase character appears
in every results of numerical calculations. Therefore, the phase of gap is
important to stabilize the two-band superconductivity.

We have also calculated the condensation energy and the parity gap for
two-band superconductivity. The result suggest that the interband interaction
λ12 affects on the condensation energy, but not on the parity gap.

In summary, an expression of Richardson’s exact solution for two-band
superconductivity has been presented, and has been solved numerically. Then,
the behavior of pair energy levels, the condensation energy, and the parity gap
have presented. The results for the condensed band is almost qualitatively the
same as those for the calculation of single band, and the co-existence of the
normal band and the condensed one may be originated from the opposite
phase of the gaps of these bands.
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Konsin, P., Kristoffel, N., and Örd, T., (1988) Phys. Lett. A 129, 339.
Konsin, P., Sorkin, B., (1998) Phys, Rev. B, 58, 5795.
Matveev, K. A. and Larkin, A. I., (1997) Phys. Rev. Lett. 78, 3749.
Moskalenko, V. A., (1959) Fiz. Met. Metalloved 8, 503.

138 H. KAWABE, H. NAGAO, AND S.P. KRUCHININ

Acknowledgments



EXACT SOLUTION OF TWO-BAND SUPERCONDUCTIVITY

Nagamatsu, J., Nakamura, N., Muranaka, T., Zentani, Y., and Akimitsu, J., (2001) Nature 410,
63.

Nagao, H., Nishino, M., Mitani, M., Yoshioka, Y., and Yamaguchi, K., (1997) Int. J. Quantum
Chem. 65, 947.

Nagao, H., Mitani, M., Nishino, M., Shigeta, Y., Yoshioka, Y., and Yamaguchi, K., (1998) Int.
J. Quantum Chem. 70, 1075.

Nagao, H., Mitani, M., Nishino, M., Shigeta, Y., Yoshioka, Y. and Yamaguchi, K., (1999) Int.
J. Quantum Chem. 75, 549.

Nagao, H., Nishino, M., Shigeta, Y., Yoshioka, Y., and Yamaguchi, K., (2000) Int. J. Quantum.
Chem. 80, 721.

Nagao, H., Nishino, M., Shigeta, Y., Yoshioka, Y. Yamaguchi, K., (2000) J. Chem. Phys. 113,
11237.

Nagao, H., Yaremko, A. M., Kruchinin, S. P., and Yamaguchi, K., (2002) New Trends in
Superconductivity P155-165, Kluwer Academic Publishers.

Nagao, H., Kruchinin, S. P., Yaremko, A. M., and Yamaguchi, K., (2002) Int. J. Mod. Phys. B
16, 3419.

Nagao, H., Kawabe, H., Kruchinin, S. P., to be submitted to Phys. Rev. Lett..
Ralph, D. C., Black, C. T., and Tinkham, M., (1995) Phys. Rev. Lett. 74, 3241.
Richardson, R. W., (1963) Phys. Lett. 3, 277.
Richardson, R. W. and Sherman, N., (1964) Nucl. Phys. 523, 221.
Richardson, R. W., (1965) J. Math. Phys. 6, 1034.
Richardson, R. W., (1966) Phys. Rev. 141, 949.
Sierra, G., Dukelsky, J., Dussel, G. G., von Delft, J. and Braun, F., (2000) Phys. Rev. B 61,

11890.
Smith, R. A. and Ambegaokar, V., (1996) Phys. Rev. Lett. 77, 4962.
Suhl, H., Matthias, B. T., and Walker, R., (1959) Phys. Rev. Lett. 3, 552.
Yamaji, K. and Shimoi, Y., (1994) Physica C 222, 349.

139


