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Abstract

In recent experiments, structured arrays of ferromagnetic nanoparticles in the bulk of a
superconductor have been fabricated. We present the theory of orientational phase transitions in
a planar regular lattice of nanoscale ferromagnetic particles embedded in a superconductor. In
the London approximation, we show that the interactions between ferromagnetic particles can
lead to either a parallel or antiparallel spin alignment depending on the ratio of the interparticle
distance, the London penetration depth and the temperature. The extension of the results to
systems of ferromagnetic nanoparticles with more complicated geometries is discussed.

1. Introduction

Recent achievements in nanoscience have demonstrated that
fundamentally new physical phenomena can be observed,
when systems are reduced in size to dimensions which
become comparable to the fundamental microscopic length of
a material under study. Superconductivity is a macroscopic
quantum phenomenon, and therefore it is especially interesting
to know whether this quantum state would be changed
or not when the samples are reduced to a nanometer
size [1]. Magnetism and superconductivity are two competing
collective ordered states in metals. In the case of
ferromagnetism, the exchange interactions lead to the parallel
alignment of electronic spins, while the electron—phonon
interactions in BCS superconductors lead to the spin singlet
pairing of electrons. Clearly, these two types of order
are generally mutually incompatible. In bulk systems, the
frustration between the electron singlet pairing and the spin
ordering is resolved by the FFLO (Fulde—Ferrell [2], Larkin—
Ovchinnikov [3]) state. The possibility for superconductivity
and ferromagnetism to exist in the same volume was proved
for magnetic superconductors HoMogSg and ErRhsBs [5].
The phase where superconductivity coexists with a magnetic
modulated structure, was discovered in works [6, 7].

In recent years, however, a great increase in interest in
the coupling between ferromagnetism and superconductivity
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in artificially structured systems has arisen. Advances in
nanotechnology and microfabrication have made it possible
to build hybrid structures containing both ferromagnetic and
superconducting components which interact magnetically or
via the proximity effect [4, §-12].

More complex types of structures have also been pro-
duced; for example, Moshchalkov fabricated arrays of fer-
romagnetic nanodots on superconducting substrates [12—14].
The London theory was used previously to describe the vortex
structure resulting from such magnetic dipoles [15-17]. A de-
scription of similar structures based on the Ginzburg—Landau
theory was developed by Peeters [19-22].

Early studies of the influence of ferromagnets on the
superconducting state were performed in the 1960s for a
dispersion of fine ferromagnetic particles (Fe, Gd, Y) in a
superconducting matrix [22, 23]. The number of investigations
of S/F hybrids has increased over the last two years [14].

The theory of superconducting systems is faced with
a number of important questions which have had no
experimental support till now. These questions include, for
example, the study of magnetic configurations in a system of
magnetic dots positioned in the superconducting matrix.

This problem was solved in the particular case of
a nanocomposite with a London-type superconducting
matrix [24]. As a result, the formulas defining a configuration
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of magnetic fields and the interaction energy for an ensemble
of ferromagnetic dots are deduced. It is established that, in the
frame of the developed model, orientational phase transitions
can occur. The condition for the phase transition for an
isolated pair and, in the nearest-neighbors approximation, for a
chain of ferromagnetic dots surrounded by a superconductor is
determined.

Distinct from the case of a sufficiently simple linear array,
the distribution of dots in a planar or three-dimensional lattice
retains a more significant arbitrariness for the orientation of
magnetic moments. The subject of the present studies is
the determination of the equilibrium configurations of the
magnetic moments for a planar lattice of magnetic dipoles
with a square basic cell embedded into a London-type
superconductor. We will show that, depending on the ratio
of the lattice constant and the parameter of penetration of a
magnetic field into the superconductor, an orientational phase
transition between orthogonal and planar distributions of the
magnetic moments of dots takes place.

To solve the posed problem, we use the results of the
previous work [24], according to which the strength of a
magnetic field produced by an arbitrary ensemble of point-like
magnetic moments is given by the relation

H(r) = ZexP(—Ri/(S) . {(M _ ﬂ)

R R}
R, R? 2R; (R; - m;)
x[(1+—+ %) - ——F—1, 1
(1+5+5) e M)
where R; = r—r; and R; = |r—r;|. Here, H(r) is the magnetic

field at the observation point r, r; is the radius-vector of the
position of a magnetic dot, § is a parameter characterizing the
penetration depth of the magnetic field which can depend, by
our assumption, on the temperature, and m; is the magnetic
moment of a magnetic dot. We have considered the case
where interacting magnetic nanodots are embedded in a bulk
superconducting material.

A second source of the interaction between moments
is the RKKY interaction modified by the presence of the
BCS energy gap D. It is clear that the range of the dipolar
forces is determined by the penetration depth §, while the
usual oscillatory power-law RKKY interaction is truncated
exponentially on a length scale of the order of &. Therefore,
the dipolar forces dominate for superconductors in the London
limit ryp < &, while the RKKY interaction is more important
in the Pippard case ro > [, where ro — 1 = f(;l + 17! and
1 is the mean free path [11]. Here, we consider the London
limit and neglect the RKKY interaction. Magnetic impurities
interacting via the RKKY interaction were considered by
Galitski and Larkin [25]. Formula (1) describes the magnetic
field strength at an arbitrary distribution of magnetic particles.
The model accepted in the present work was earlier discussed
in [24]. A single limitation for relation (1) is related to the
application of the approximation a magnetic dot. In this case,
the characteristic size of a magnetic dot d must be much less
than the penetration depth of the magnetic field (§ > d).

It is easy to prove that, in the limiting case where the
penetration depth of the field § tends to infinity § — oo (the

transition in the normal state) in the domain adjacent to the
ensemble of dots, relation (1) tends to the limit

3Ri(R; -m;)  my
Hy = 3 (R )

1 L
which describes the magnetic field of a system of point-like
dipoles in the medium being in the normal state.
In the other limiting case where the distances between dots
are significantly greater than the penetration depth d <« § <
R, relation (1) reads
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2. Equilibrium configurations and conditions for the
orientational phase transition in a two-dimensional
lattice of ferromagnetic dots

In order to determine the collective state of the magnetic
moments in nanocomposite materials with the matrix made of
a London-type superconductor, we use the following formula
for the energy of magnetic interaction [24]:

U=-1 ZZeXp(—Rij/S)
i
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where R, = r — r; and R; = |r — r;|. Earlier, this formula

was used to determine the conditions for the orientational
phase transition for an isolated pair of point-like magnetic
moments [24]. However, relation (2) allows one to study the
equilibrium states of a wider circle of nanocomposite systems,
one of which is a planar lattice of ferromagnetic dots with the
square basic cell.

First of all, we note that the realization of one or other
magnetic configuration depends on both the competition of
diamagnetic effects from the side of the superconducting
matrix and the magnetostatic interaction in the system of
ferromagnetic dots. At lower temperatures eliminating
the thermal disordering of the system, the magnetostatic
interaction leads to a correlation of magnetic moments. As the
main conditions for the formation of magnetic configurations,
we take the equivalence of all sites and the zero value of the
net magnetic moment of the lattice.

The planar lattice of dots by itself sets a preferred direction
in the space. Therefore, we will separate two configurations
from the whole manifold of spatial orientations of magnetic
moments. The first configuration is presented in figure 1. It is
characterized by the orientations of the magnetic moments of
dots which are orthogonal to the base plane. The alternation
of the magnetic moments of neighboring dots decreases, to a
certain extent, the energy of magnetic interaction. In addition,
such a distribution of magnetic moments favors a decrease
of the strength of a magnetic field in a system of magnetic
dipoles embedded in the superconducting matrix, which is also
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Figure 1. Two-dimensional lattice of magnetic dots. Magnetic
moments are directed up (filled circles) or down (empty circles); a is
the lattice constant.

Figure 2. Two-dimensional lattice of magnetic dots. Magnetic
moments are aligned in the plane in the form of chains; a is the
lattice constant.

advantageous from the energy viewpoint. Thus, the given
configuration can be considered as a version of the magnetic
order.

A configuration of the second type is shown in figure 2.
It is characterized by the distribution of magnetic moments in
the base plane of the lattice such that the magnetic moments
are aligned as magnetic chains with alternating directions of
the magnetic moments. Here, like the configuration presented
in figure 1, the main requirement, namely the equivalence of
the states of magnetic dots, is satisfied. A similar distribution
also decreases the energy of the magnetostatic interaction,
on the one hand, and on the other favors a decrease in the
strength of a magnetic field in a superconductor. At the same
time, the planar orientation of magnetic moments has the basic
distinction from the orthogonal one. For example, by means
of a continuous change of the magnetic moments in the base
plane, the configuration in figure 2 can be transferred in the
structure shown in figure 3. Such a system is characterized
by a coherent rotation of magnetic moments by an angle
+¢ relative to the principal directions of the lattice. In this
case, both the modulation of the direction of moments at the

k Y

My

Figure 3. Part of the lattice with a modulated planar distribution of
the magnetic moments (‘a’ is the lattice constant). Circles stand for
magnetic dots, and the arrows on them indicate the directions of
magnetic moments m,;, in the base plane (n, k are the spatial indices
of magnetic dots). The angle ¢ defines a deviation of the moments of
magnetic dots from the principal direction of the lattice. The states of
all dots in the given configuration are equivalent. The net magnetic
moment is zero. The separated circles denote schematically magnetic
vortices. The dotted lines are tangents to the directions of the
magnetic moments at sites of the lattice.

sites of the lattice and some increase in the energy of the
magnetic chains occur. These processes are accompanied by
the formation of magnetic vortices in cells, which promotes
a decrease in the magnetic interaction energy. The states of
separate magnetic dots in the lattice remain equivalent at the
zero total magnetization. Thus, the questions arise; how the
energy of the array of magnetic moments in the base plane
shown in figure 3 depends on the angle ¢, and to which value
it is equal in the equilibrium state.

To answer these questions, we consider relation (2) for the
interaction energy and reduce it to a single sum by virtue of
the fact that the states of the magnetic dots are equivalent. In
this case, in order to calculate the energy of the lattice, it is
sufficient to determine the energy of a single magnetic dot, e.g.,
my o, located at the origin of the coordinate system and then to
multiply the result by the total number of magnetic points N.

Relation (2) becomes significantly simpler:

U= N31 0 +82
o2 da da?

N PR . P
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By writing formula (3), we used the method of differentiation
with respect to the parameter o which should be set equal
to unity after the calculations. The index i stands for the
summation over all sites of the lattice.

At the summation in relation (3), it iS convenient to
introduce the pair of indices (n, k) defining the position of a
site in the lattice (figure 3) instead of the running index of
magnetic dots i.
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It is easy to see that the system represented in figure 3 pos-
sesses the translational invariance with a period of 2a so that

my, ;= My k42p, LLp==%£1,%£2,.... 4

The lattice has only four types of magnetic dots differing from
one another by a spatial orientation of magnetic moments.
Their vector components depend on the angle ¢ in the follow-
ing manner:

cos @
m, ;= My o) k42ps my o, =My =m (Sinfp ) ,
0
cos @
myi2p =Myg=m <— Sin§0) ,
0
—cosg
my2p41 = Mo =m < sing ) s
0
—cos @
my 412,41 =My =m (— Sin(p) ,
0
lp==+1,42, ...
I p==+1,+2, ...,
)

where m is the modulus of the magnetic moment of a site. Af-
ter the substitution of (5) in (3) and the summation over sites of
the unbounded lattice, we get the following significant result.
It turns out that the interaction energy of the system of mag-
netic dots (see figure 3) does not depend on the angle ¢ and is
determined by the relation

U _

N =
where N is the number of sites of the lattice, m is the magnetic
moment of a dot, the factor m?/a> on the right-hand side has
a dimension of energy and characterizes the interaction energy
in the system of magnetic dots, F'(a/§) is the energy charac-
teristic of a magnetic state which is a universal function of a
single parameter and determines the dependence of the energy
on both the period and the field penetration depth at the distri-
bution of magnetic moments in the base plane of the lattice. It
can be represented in the form of a sum
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Thus, the state of the system is degenerated in the
parameter ¢ in the presence of a tough correlation of the
mutual orientations of moments of the ensemble of magnetic
dots. The energies of the configuration shown in figure 2 and
the ensemble with a modulated distribution of the magnetic
moments (see figure 3) coincide. In turn, the determination
of the energy of magnetic interaction for the configuration
possessing the orthogonal orientation of magnetic moments
(figure 1) requires a smaller amount of calculations, because
the first sum in formula (3) vanishes.

The result of the calculations can be represented in the

form 5
U, m
W = F - ®(a/s), ®)

where the factor m?/a> characterizes, like that in relation (6),
the magnetic interaction energy, ®(a/d) is the energy
characteristic of the magnetic state which is a universal
function of the single parameter and determines the
dependence of the energy on both the period and the field
penetration depth at the distribution of magnetic moments
which are perpendicular to the base plane of the lattice. This
function can be represented in the following form:

®a/s) = (1 o, 0]
are)r= de 9a2) 2

X 4-exp(—a - (a)d) - /2-124+2- p?)
2SI .

2- 24+2. p2)3/2
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|=—00 p=—00
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The difference in the energies of the system of magnetic
moments with planar (6) and perpendicular (8) orientations
relative to the lattice plane is determined by the ratio of the
functions ®(a/§) and F(a/8). The calculation of the functions
®(a/8) and F(a/$) on the basis of relations (7) and (9) is
not a difficult task and can be realized with any mathematical
software. The results are presented in a graphical form in
figure 4. In figure 4, we represent the plots of the energy
characteristics for two different states of the magnetic lattice
versus the ratio of the parameter of a cell and the penetration
depth of the magnetic field, a/§. The limit a/6 — O
corresponds to the transition of the matrix into the normal state.
It is obvious that the lattice with the planar orientation of
magnetic moments (figures 2 and 3) possesses a lower energy
in the normal state at a/6 = 0. Therefore, the state with
the perpendicular direction of moments (figure 1) cannot be
realized at all in the absence of a superconductor. As the
temperature decreases, and the penetration depth diminishes
gradually, the parameter a/§ begins to grow. When this
parameter attains the value a/§ &~ 3.3, the configuration with
the orthogonal orientation of magnetic moments (figure 1)
becomes more advantageous in energy, and the orientational
phase transition occurs in the system. At a decrease in
the temperature, a similar scenario of events completely
corresponds to a reorientation of the magnetic moments of an
isolated pair of magnetic points which was considered in the
previous work [24].
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Figure 4. Plots of the energy characteristics F(a/d8) and ®(a/d) of
states of the lattice with the normal and planar orientations of
magnetic moments, respectively. Values of F(0) and $(0)
correspond to the transition of the superconducting matrix into the
normal state.

Our approach is valid for materials which are well
described by the London limit ry « §, RKKY interactions
being negligible. In the experimental systems studied by
Moshchalkov [9, 10], a square array of Pt/Co magnetic
nanodots was deposited on the surface of the Pb-based
superconductor which is type 1 (k = 0.48). The dots were
about 0.26 pum in diameter and occupied the lattice with
a spacing of 0.6 um. We showed in [24] that the spin-
orientational phase transition for Pb will be observed at the
temperature 7 = 7.14 K, whereas T, = 7.2 K.

A certain interest can be attracted to the question
about the magnetic ordering in a three-dimensional lattice
of magnetic points. The answer can be obtained from
the condition of minimum for the potential energy of the
magnetic interaction (2), the formula for which is deduced
in work [24]. However, the arbitrariness in the orientations
of magnetic moments of a 3D system is much greater.
Therefore, the determination of steady three-dimensional
configurations is a promising task of the given trend. Of
course, it would be interesting in future to generalize our
results to superconductors in the Pippard limit, in which RKKY
interactions between the quantum dots will dominate over
dipolar forces [25].

3. Conclusion

In conclusion, we note that an analogous phase transition can
be expected to occur in a planar lattice with a rectangular basic
cell. The only difference will consist in the elimination of the
degeneration relative to the directions of magnetic moments in
the base plane.

Of course, the direct observation of a phase transition
will be hampered, because the problem involves a magnetic
lattice surrounded by a superconductor. However, a similar
orientational transformation must also happen in a lattice

applied on the surface of a massive superconductor, though
values of the parameter ao/§ will be different in this case.
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