Ab initio computations of $BaZrO_3$, $CaTiO_3$, SrTiO₃ perovskite as well as WO_3 and ReO_3 (001) surfaces

Cite as: Low Temp. Phys. **48**, 811 (2022); https://doi.org/10.1063/10.0014024 Submitted: 23 August 2022 • Published Online: 06 October 2022

R. I. Eglitis, A. I. Popov, J. Purans, et al.

ARTICLES YOU MAY BE INTERESTED IN

Electron-phonon interaction and point contact enhanced superconductivity in trigonal PtBi₂ Low Temperature Physics **48**, 747 (2022); https://doi.org/10.1063/10.0014014

A new model of a molecular rotor in the oscillating electric field Low Temperature Physics **48**, 819 (2022); https://doi.org/10.1063/10.0014025

Dielectric and electrical properties of reduced graphene oxide paper after electron irradiation Low Temperature Physics **48**, 832 (2022); https://doi.org/10.1063/10.0014027

Low Temp. Phys. **48**, 811 (2022); https://doi.org/10.1063/10.0014024 © 2022 Author(s).

Ab initio computations of $BaZrO_3$, $CaTiO_3$, $SrTiO_3$ perovskite as well as WO_3 and ReO_3 (001) surfaces

Cite as: Fiz. Nizk. Temp. **48**, 918–927 (October 2022); doi: 10.1063/10.0014024 Submitted: 23 August 2022

R. I. Eglitis,^{1,a)} A. I. Popov,¹ J. Purans,¹ D. Bocharov,¹ Y. A. Mastrikov,¹ Ran Jia,^{1,2} and S. P. Kruchinin³

AFFILIATIONS

¹Institute of Solid State Physics, Riga LV 1063, Latvia

²Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University,

Changchun 130023, People's Republic of China

³Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine

^{a)}Author to whom correspondence should be addressed: rieglitis@gmail.com

ABSTRACT

We computed, at the *ab initio* level, BaZrO₃, CaTiO₃, SrTiO₃ as well as WO₃ and ReO₃ (001) surfaces and analyzed systematic tendencies therein. As obtained by our *ab initio* hybrid DFT-HF computations, at BO₂-terminated (001) surfaces of investigated ABO₃ perovskites as well as WO₃ and ReO₃ oxides, all top-layer ions shift in the direction of the crystal bulk. The single-deviation from this tendency is upward shift of the WO₂-terminated WO₃ (001) surface top layer O ion by the magnitude of +0.42% of the bulk lattice constant a_0 . In contrary, all second layer ions, with the single exception of ReO₂-terminated ReO₃ (001) surface O ion, shifts upwards. Our computed BO₂-terminated SrTiO₃, CaTiO₃, BaZrO₃, WO₃ and ReO₃ (001) surface Γ - Γ band gaps always are smaller than their respective bulk Γ - Γ band gaps. The B-O ion chemical bond populations in the SrTiO₃, CaTiO₃ and BaZrO₃ perovskite bulk are always smaller than at their nearby BO₂-terminated (001) surfaces. On the contrary, the W-O and Re-O ion chemical bond populations in the WO₃ (0.142*e*) and ReO₃ (0.212*e*) bulk are slightly larger than at nearby the WO₂- and ReO₂-terminated WO₃ and ReO₃ (001) surfaces (0.108*e* and 0.170*e*). Nonetheless, the W-O and Re-O chemical bond populations between the W and Re ions located in the upper layer and the O ions located in the second layer of the WO₂- and ReO₂-terminated (001) surfaces (0.278*e* and 0.262*e*) are the absolutely largest bond populations in the WO₃ and ReO₃ crystals.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0014024

1. INTRODUCTION

Surface phenomena, taking place in the ABO3 perovskites as well as WO3 and ReO3 oxides, are crucial questions in present-day physics.¹⁻¹¹ The SrTiO₃, CaTiO₃, BaZrO₃, WO₃, and ReO₃ (001) surfaces have numerous technological applications.¹²⁻¹⁵ For all these applications the (001) surface structure and quality are of the key importance. For example, it is possible to prepare the SrTiO₃ coating on the TiO₂ substrate in order to achieve the photocatalytic antibacterial properties.¹⁶ Recently the SrTiO₃ material containing the surface oxygen vacancies was synthesized by means of carbon reduction under high temperature.¹⁷ This material was applied with great success for photocatalytic overall water splitting. Tungsten oxide WO₃ is a technologically important material.¹⁸ Thin films based upon WO₃ can be used forinstance, as photoanodes for water splitting and as antimicrobial materials in medicine.¹⁸ Finally, the CaTiO₃ exhibits activity in coliform disinfection. Namely, CaTiO₃ is utilized in the formation of the antibacterial

ceramic.¹⁹ The predictive ability of *ab initio* computations permits the theoretical design of novel materials for high energy batteries. A great example is the theoretical projection of the 4 V battery cathodes from *ab initio* computations by Ceder *et al.*^{20,21} Nevertheless, we recently demonstrated, based on our *ab initio* computations, that also a high energy 5 V battery is possible employing the novel battery cathode material Li₂CoMn₃O₈.²²⁻²⁴

The SrTiO₃, CaTiO₃, and BaZrO₃ matrixes are so-called ABO₃ perovskites.^{25–28} In order to save the computer time, we carried out all our bulk and (001) surface *ab initio* computations of ABO₃ perovskites in its high symmetry cubic phase. The SrTiO₃, CaTiO₃ as well as BaZrO₃ cubic unit cells hold 5 atoms.^{29–31} The atom A (A = Sr, Ca or Ba) has the coordinates (0, 0, 0). It is placed at the corner position of the ABO₃ cube. The Ti atom is placed in the body center position of the cube. It has the following coordinates ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$). Finally, three O atoms are placed in the face center positions of the cube. They have the coordinates ($\frac{1}{2}$, $\frac{1}{2}$, 0),

($\frac{1}{2}$, 0, $\frac{1}{2}$) and (0, $\frac{1}{2}$, $\frac{1}{2}$). The cubic phase of the SrTiO₃, CaTiO₃, and BaZrO₃ perovskite matrixes have the *Pm3m* space group. They all have the space group number 221. It is worth to note that at very low temperatures SrTiO₃ demonstrates piezoelectric and superconducting properties.³² SrTiO₃ also has a huge dielectric constant.³³

We want to stress that WO₃ and ReO₃ matrixes have precisely the same crystal structure as SrTiO₃, CaTiO₃, and BaZrO₃ perovskites in their cubic phases. Particularly, likewise the WO₃ and also ReO₃ have the *Pm3m* space group with the same space group number 221. Namely, the W and R atoms possess coordinates ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$). Three O atoms in the WO₃ and ReO₃ crystals possess the coordinates ($\frac{1}{2}$, $\frac{1}{2}$, 0), ($\frac{1}{2}$, 0, $\frac{1}{2}$), and (0, $\frac{1}{2}$, $\frac{1}{2}$). The only noticeable and crucial distinction between the SrTiO₃, CaTiO₃, BaZrO₃ perovskite cubic structures and the WO₃ and ReO₃ cubic matrixes is the unfilled A cation site for the WO₃ and ReO₃ crystals. Tungsten oxide (WO₃) has a lot of technologically important applications. For example, WO₃ can be chemically doped forming tungsten bronzes. Some of these compounds are superconducting.^{34,35} ReO₃ is nonmagnetic and highly metallic. ReO₃ also has the highest conductivity among all oxides.³⁶

It is considerably more easy to compute the SrTiO₃, CaTiO₃, and BaZrO₃ neutral (001) surfaces than their very complex, polar as well as charged (011) surfaces, or even more complicated (111) surfaces.^{37–52} It is worth to note, that the polar and very complex WO₂- and ReO₂-terminated WO₃ and ReO₃ (001) surfaces are even less studied theoretically than the ABO₃ perovskite neutral (001) surfaces. Namely, only a few theoretical studies exist, to the best of our knowledge, dealing with *ab initio* computations of WO₂- and ReO₂-terminated WO₃ and ReO₃ (001) surfaces.^{53–55}

On the experimental side, the experimentally identified SrTiO₃ direct bulk Γ – Γ band gap is equal to 3.75 eV⁵⁶ (Table I). It is worth noticing, that the bulk SrTiO₃ is an incipient ferroelectric. In SrTiO₃ quantum fluctuations suppress the low-temperature phase transition to the ferroelectric ground state, and it always remains in its cubic phase.^{57–60} CaTiO₃ undergo several phase transitions as a function of temperature.^{61,62} Namely, at temperature ($T \le 1486$ K) CaTiO₃ has orthorhombic structure *Pbnm* (Table I). As temperature increases (1523 K $\le T \le 1622$ K) CaTiO₃ has the tetragonal structure *I*4/*mcm*. Finally, at temperatures ($T \ge 1647$ K) CaTiO₃ has the cubic structure (Table I) with the symmetry group *Pm3m*.^{61,62} In contrast to the CaTiO₃ matrix, which undergoes several phase transitions, BaZrO₃ perovskite has a cubic structure at all temperatures^{63,64} (Table I).

 WO_3 undergoes several phase transformations. Namely, at 320 °C a monoclinic to orthorhombic transformation takes place.

The phase transformation from orthorhombic to tetragonal happens at 720°C.⁶⁵ Finally, the cubic WO₃ structure has not been yet detected experimentally at high temperatures. Nevertheless, in many studies, cubic WO₃ is considered as a reference structure⁶ (Table I). Nowadays, many excellent reports dealing with theoretical and experimental studies are devoted to the cubic phase of WO3⁶⁶⁻ ⁸ (Table I). In contrast to WO₃, ReO₃ has an undistorted cubic structure even at room temperature. The cubic structure of ReO3 is stable in the temperature range from liquid helium temperatures to its melting point of 673 K^{69} (Table I). Thereby, ReO₃ has exactly the same cubic ABO3 perovskite structure at all temperatures, but with a vacant A cation site.^{36,70,71} Some previous theoretical studies of the electronic and atomic structure of the cubic bulk ReO₃ were performed using the band structure calculations.⁷² Experimental ReO3 bulk lattice constant is equal to 3.747 Å (Table I).⁷³

The main idea of this contribution is to perform *ab initio* computations for the (001) surfaces of two different class of materials. Namely, for WO₂- and ReO₂-terminated WO₃ and ReO₃ (001) surfaces, as well as for BO₂-terminated ABO₃ perovskite (001) surfaces. We analyzed the results of *ab initio* computations for all 5 of our calculated (001) surfaces, detected systematic tendencies and examined them in a way easily understandable for a broad audience of readers.

2. AB INITIO COMPUTATION METHOD AND (001) SURFACE MODELS

In our *ab initio* SrTiO₃, CaTiO₃, BaZrO₃, WO₃, and ReO₃ bulk and (001) surface computations we used the well-known, classical hybrid exchange-correlation functionals such as B3PW^{79–81} or B3LYP.⁸² Both these hybrid exchange-correlation functionals B3PW^{79–81} and B3LYP⁸² are included in the world-famous CRYSTAL computational code.⁸³ The computational code CRYSTAL⁸³ operates a two-dimensional isolated slab model for (001) surface structure *ab initio* computations. In our *ab initio* computations for WO₃, ReO₃, SrTiO₃, CaTiO₃, and BaZrO₃, we carried out the reciprocal space integration.

We sampled the Brillouin zone with an $8 \times 8 \times 8$ enlarged Pack Monkhorst⁸⁴ net for the bulk as well with $8 \times 8 \times 1$ extension for their (001) surfaces. In order to see the performance of nonidentical exchange-correlation functionals, the bulk Γ – Γ band gaps of SrTiO₃, BaZrO₃, CaTiO₃, CaF₂, and MgF₂ were computed (Table II and Fig. 1). Experimental Γ – Γ band gaps^{85–87} are listed in Table II for comparison purposes. As we can see from Table II and Fig. 1, according to our *ab initio* computations,^{42,88–91} the Hartree–

Substance	Structure at room temperature (RT)	Band gap, eV at RT	Transition T to cubic, K	Expt. lattice const, Å
SrTiO ₃	Cubic	3.75 eV $(\Gamma - \Gamma)^{56}$	110 K ⁵⁷	3.89845 Å – 110 K ⁶⁰
CaTiO ₃	Orthorhombic	$\sim 3.5 \text{ eV} (\Gamma - \Gamma)^{61}$	1647 K ⁶²	3.8967 Å – 777 K ⁶²
BaZrO ₃	Cubic	5.3 eV $(\Gamma - \Gamma)^{63}$	Cubic at all T	4.199 Å – at RT ⁶⁴
WO ₃	Monoclinic	3.74 eV (Γ–Γ) ⁶⁶	Unknown	3.71–3.75 Å ⁶⁷
ReO ₃	Cubic	Unknown	Cubic from liquid helium <i>T</i> to 673 K	3.747 Å ⁷⁸

TABLE I. Experimental data for SrTiO₃, CaTiO₃, and BaZrO₃ perovskites as well as WO₃ and ReO₃.

TABLE II. S	SrTiO3, CaTiO3,	BaZrO ₃ , Ca	F ₂ , and	MgF ₂ b	ulk band gaps	s (in eV)	com-
puted by no band gaps a	on-identical exch are cited for con	ange-correla parison. ^{56,63}	ation fun ^{3,85–87}	ctionals.	Experimental	data for	Г-Г

Method	$SrTiO_3$	$BaZrO_3$	CaTiO ₃	CaF_2	MgF_2
Experiment	3.75 ⁵⁶	5.3 ⁶³	No data for cubic phase	12.1 ⁸⁵	12.4 ⁸⁶ ; 13.00 ⁸⁷
HF B3PW B3LYP PWGGA	12.33 3.96 3.89 2.31	12.96 4.93 4.79 3.24	12.63 4.18 4.20 2.34	20.77 10.96 10.85 8.51	19.65 9.48 9.42 6.94

Fock method⁹² always considerably, even by a factor of two or three, overestimates the experimental Γ – Γ bulk band gap.^{42,88–91} For example, our *ab initio* HF computed SrTiO₃ Γ – Γ bulk band gap is equal to 12.33 eV, but the experimental SrTiO₃ Γ – Γ bulk band gap is equal to 3.75 eV⁵⁶ (Fig. 1 and Table II). Namely, our *ab initio* HF computed SrTiO₃ Γ – Γ bulk band gap is 3.288 times larger than the experimental SrTiO₃ Γ – Γ band gap.⁵⁶ From another side, our *ab initio* computations by the Perdew–Wang PWGGA⁸¹ exchange-correlation functional give the SrTiO₃ bulk Γ – Γ band gap 2.31 eV that is 1.62 times smaller than the SrTiO₃ experimental bulk Γ – Γ band gap 3.75 eV.⁵⁶ Also for other our *ab initio* computed materials, like, BaZrO₃, CaTiO₃, CaF₂ and MgF₂, the Hartree–Fock method always considerably overestimates the experimental bulk Γ – Γ band gap (Fig. 1 and Table II), whereas the Perdew–Wang PWGGA exchange-correlation functional very strongly underestimates it.

For all five SrTiO₃, BaZrO₃, CaTiO₃, CaF₂, and MgF₂ materials, our *ab initio* computed bulk Γ - Γ band gaps by the hybrid

FIG. 1. *Ab initio* computed bulk band gaps using different exchange-correlation functionals and their experimentally detected values for SrTiO₃, BaZrO₃, CaTiO₃, CaF₂, and MgF₂ materials : PWGGA (1), B3LYP(2), B3PW (3), Experiment (4), HF (5).

exchange-correlation functionals B3PW and B3LYP are very close, but nevertheless always slightly different (Table II and Fig. 1). For example, our by B3PW hybrid exchange-correlation functional calculated SrTiO₃ bulk Γ - Γ band gap is equal to 3.96 eV, whereas by B3LYP hybrid exchange-correlation functional calculated the same band gap is only by 0.07 eV smaller, namely 3.89 eV. Also for all other our *ab initio* computed materials, like, CaTiO₃, BaZrO₃, CaF₂, and MgF₂ the bulk Γ - Γ band gaps, computed by the B3PW or B3LYP functionals are very close, but never coincide (Table II and Fig. 1). It is worth to note, that the best possible agreement between the experiments and our *ab initio* computations for all five materials is possible to achieve by means of the hybrid exchangecorrelation functionals B3PW or B3LYP (Table II and Fig. 1).

With the goal to compute the TiO₂-terminated SrTiO₃, and CaTiO₃ as well as ZrO₂-terminated BaZrO₃ (001) surfaces, we make use of nine-layer symmetrical slabs. These slabs consisted of alternating and neutral TiO₂ (ZrO₂) or AO layers (Fig. 2). They are located perpendicular to the *z* axis. Our build up 9 layer slab, operating in ABO₃ perovskite (001) surface computations, was terminated from both sides by the TiO₂ (ZrO₂) planes (Fig. 2). Consequently, our (001) surface model for the BO₂-terminated ABO₃ perovskites consisted of a 23 atom supercell. Our computed (001) slab was non-stoichiometric with the chemical formula $A_4B_5O_{14}$ (Fig. 2).

In contrast to neutral SrTiO₃, CaTiO₃, BaZrO₃ (001) surfaces, which consist of neutral BO₂ or AO layers, WO₂- and ReO₂-terminated WO₃ and ReO₃ polar (001) surfaces subsist from charged WO₂ (ReO₂) or O layers (Fig. 3). It is more problematic to

FIG. 2. Side view of the nine-layer ${\rm BO}_2\text{-}terminated <math display="inline">{\rm ABO}_3$ perovskite (001) surface.

compute the polar WO₂- and ReO₂-terminated WO₃ and ReO₃ (001) surfaces than the ABO₃ perovskite neutral BO₂-terminated (001) surfaces.^{47,49,51,54,93} In our *ab initio* computations, for example, the WO₂-terminated polar WO₃ (001) surface contained 9 alternating WO₂ and O layers (Fig. 3). This surface consisted of 19 atoms with the empirical unit cell equation W₅O₁₄ (Fig. 3). We employed the atomic basis sets for the neutral W atom⁹⁴ as well as for the neutral Re⁸³ and neutral O atoms.⁸⁸ Therefore, we got in our *ab initio* computations, the WO₂- and ReO₂-terminated WO₃ and ReO₃ (001) surfaces with a total slab charge equal to zero. We employed the well-known Mulliken population analysis for the explanation of WO₃, ReO₃, BaZrO₃, CaTiO₃, and SrTiO₃ effective atomic charges *q* as well as their bond populations *P*.^{95–98}

3. AB INITIO COMPUTATION RESULTS FOR WO₃, REO₃, SRTIO₃, CATIO₃, AND BAZRO₃ BULK

As a first step of our *ab initio* computations, using the B3PW or B3LYP hybrid exchange-correlation functionals, we computed the WO₃, ReO₃, BaZrO₃, CaTiO₃, and SrTiO₃ theoretical bulk lattice constants.^{53–55,99–101} It is worth noting that we used the

TABLE IV. WO₃, ReO₃, BaZrO₃, CaTiO₃, and SrTiO₃ bulk effective charges Q (in e) and bond populations P (in e) computed by non-identical exchange-correlation functionals B3PW and B3LYP.

Ma	aterial	WO ₂	ReO ₂	BaZrO ₂	CaTiO ₂	SrTiO ₂
Atom	Property	B3LYP	B3LYP	B3PW	B3PW	B3PW
А	Q	_	_	+1.815	+1.782	+1.871
	P	-	-	-0.012	+0.006	-0.010
0	Q	-1.032	-0.794	-1.316	-1.371	-1.407
	Р	+0.142	+0.212	+0.108	+0.084	+0.088
В	Q	+3.095	+2.382	+2.134	+2.330	+2.351

B3LYP hybrid exchange-correlation functional for all our ab initio computations dealing with WO3 and ReO3 bulk and (001) surface matrixes. Just opposite, for our *ab initio* computations dealing with BaZrO₃, CaTiO₃, and SrTiO₃ bulk as well as (001) surface matrixes, we always used the B3PW hybrid exchange-correlation functional. Our *ab initio* computed bulk lattice constants for WO₃ (3.775 Å), ReO₃ (3.758 Å), BaZrO₃ (4.234 Å), CaTiO₃ (3.851 Å), and SrTiO₃ (3.904 Å) are in a fair agreement with the available experimental data (Table III). For example, our ab initio B3LYP computed bulk lattice constant for WO₃ (3.775 Å) is several percent higher than the experimentally measured bulk lattice constant for WO₃ (3.71-3.75 Å⁶⁷ (Table III). In contrast, our *ab initio* B3LYP computed bulk lattice constant for ReO₃ matrix (3.758 Å) is in almost perfect agreement with the experimentally measured ReO₃ bulk lattice constant (3.747 Å).⁷⁸ Also, our *ab initio* B3PW computed SrTiO₃ bulk lattice constant (3.904 Å) is in an outstanding agreement with the SrTiO₃ experimental bulk lattice constant (3.89845 Å).⁶⁰ Finally, our ab initio B3PW computed CaTiO₃ (3.851 Å) and BaZrO₃ (4.234 Å) bulk lattice constants are in a fair agreement with the experimentally measured CaTiO₃ (3.8967)⁶² and BaZrO₃ $(4.199 \text{ Å})^{64}$ bulk lattice constants (Table III).

Our computed effective atomic charges in the WO₃ matrix are equal to +3.095*e* for the W atom and -1.032e for the O atom. The chemical bond populations between the W and O atoms in the WO₃ matrix is equal to +0.142*e* (Table IV). Our computed effective atomic charges for the ReO₃ matrix atoms are smaller than for the WO₃ matrix respective atoms. Namely, the Re atom effective charge is +2.382*e*, whereas the O atom effective charge is equal to – 0.794*e*, indicating a larger chemical bond covalency in the ReO₃ matrix in comparison to the WO₃ material. The larger chemical bond covalency in ReO₃ is confirmed with larger chemical bond population between the Re and O atoms (+0.212*e*), than it was between the W and O atoms in the WO₃ matrix (+0.142*e*) (Table IV). Table IV shows our computed BaZrO₃, CaTiO₃, and

TABLE III. WO₃, ReO₃, BaZrO₃, CaTiO₃, and SrTiO₃ bulk lattice constants computed by non-identical exchange-correlation functionals B3LYP or B3PW. Experimental lattice constants are listed for comparison purposes.

Material	WO ₃	ReO ₃	BaZrO ₃	CaTiO ₃	SrTiO ₃
Functional	B3LYP	B3LYP	B3PW	B3PW	B3PW
Theory	3.775 Å	3.758 Å	4.234 Å	3.851 Å	3.904 Å
Experiment	3.71–3.75 Å ⁶⁷	3.747 Å ⁷⁸	4.199 Å ⁶⁴	3.8967 Å ⁶²	3.89845 Å ⁶⁰

FIG. 4. Our *ab initio* computed bulk (1) and WO₂, ReO₂, ZrO₂, TiO₂-terminated (001) surface (2) B–O chemical bond populations for WO₃, ReO₃, BaZrO₃, CaTiO₃, and SrTiO₃ crystals (in e).

SrTiO₃ effective charges. It is worth noting, that the absolute value of O charges in BaZrO₃, CaTiO₃, and SrTiO₃ perovskites (-1.316e; -1.371e; -1.407e, respectively) always are considerably larger than the respective absolute O values in WO₃ and ReO₃ crystals (-1.032e and -0.794e) (Table IV). Just opposite, the chemical bond populations between the B and O atoms in the BaZrO₃, CaTiO₃, and SrTiO₃ perovskite bulk (+0.108e; +0.084e; +0.088e), always are considerably smaller than the respective B–O chemical bond populations in the WO₃ and ReO₃ crystal bulk (+0.142e and +0.212e) (Table IV and Fig. 4).

As a next step, we computed the BaZrO₃, CaTiO₃, and SrTiO₃ bulk Γ - Γ band gaps using the B3PW hybrid exchange-correlation functional (Table V). Our *ab initio* B3PW computed BaZrO₃, CaTiO₃, and SrTiO₃ bulk Γ - Γ band gaps are equal to 4.93, 4.18, and 3.96 eV, respectively (Table V and Fig. 5). They are in a fair agreement with the available experimental data for the BaZrO₃ (5.3 eV)⁶³ and SrTiO₃ (3.75 eV) bulk Γ - Γ band gaps.⁵⁶ For example, our *ab initio* B3PW computed SrTiO₃ bulk band gap at the Γ point (3.96 eV) only by 0.21 eV exceeds the respective experimental value of 3.75 eV (Table V). There are no experimental data available for the CaTiO₃ Γ - Γ bulk band gap in its cubic phase. Nevertheless, the experimentally measured CaTiO₃ Γ - Γ bulk band gap in its orthorhombic phase is around 3.5 eV,⁶¹ which is rather

TABLE V. Ab initio computed and experimentally measured WO₃, ReO₃, BaZrO₃, CaTiO₃, and SrTiO₃ bulk Γ - Γ band gaps (in eV).

Material Method	WO ₃ B3LYP	ReO ₃ B3LYP	BaZrO ₃ B3PW	CaTiO ₃ B3PW	SrTiO ₃ B3PW
Our <i>ab initio</i> comp. Experiment	4.95	5.76 No	4.93	4.18 No data	3.96
L	3.74 ⁶⁶	data	5.3 ⁶³	for cubic	3.75 ⁵⁶

FIG. 5. Our *ab initio* computed Γ - Γ band gaps for WO₃, ReO₃, BaZrO₃, CaTiO₃, and SrTiO₃ bulk (3) and their BO₂-terminated (001) surfaces (1). Available experimental data for bulk are listed for comparison purposes (2).

close to our B3PW computed CaTiO₃ Γ – Γ band gap in the cubic phase, namely, 4.18 eV. Finally, our *ab initio* B3LYP computed WO₃ bulk band gap at the Γ point by 1.21 eV exceeds the respective experimental value for the WO₃ bulk Γ – Γ band gap (3.74 eV)⁶⁶ (Table V).

4. AB INITIO COMPUTATION RESULTS FOR BO₂-TERMINATED WO₃, REO₃, SRTIO₃, CATIO₃, AND BAZRO₃ (001) SURFACES

For the WO₂- and ReO₂-terminated WO₃ and ReO₃ as well as BO2-terminated BaZrO3, CaTiO3, and SrTiO3 (001) surfaces, as follows from our *ab initio* B3LYP and B3PW computations,⁵ all uppermost layer surface ions relax inwards, namely towards the bulk (Table VI). The single exception from this systematic tendency is the out-ward shift of the WO2-terminated WO3 (001) surface top layer O ion by (0.42% of a_0) (Table VI). In contrast, all existing second layer ions for the WO2- and ReO2-terminated WO3 and ReO3 as well as BO2-terminated BaZrO3, CaTiO3, and SrTiO3 (001) surfaces relax outwards (Table VI). Again, there is only one exception to this systematic tendency. Namely, the ReO₂-terminated ReO₃ (001) surface second layer O ion relax inwards by $(0.32\% \text{ of } a_0)$ (Table VI). It is noteworthy, that according to our ab initio computations, for all BO2-terminated BaZrO3, CaTiO3, and SrTiO3 perovskite (001) surfaces, the second layer metal ion upward displacement magnitudes are always larger than the upper layer metal ion inward displacement magnitudes. Just opposite, for the WO2- and ReO2-terminated WO3 and ReO₃ (001) surfaces, the upper layer O atom displacement magnitudes are at least two times larger than the second layer O atom displacement magnitudes.

As we can see from Table VII, the surface rumplings *s* computed by Padilla *et al.* (+1.8% of a_0)¹⁰² and Cheng *et al.*

WO₂-, ReO₂- and BO₂- terminated (001) surfaces.

TABLE VI. WO2- and ReO2-terminated WO3 and	d ReO ₃ as well as BO ₂ -terminated
BaZrO ₃ , CaTiO ₃ , and SrTiO ₃ (001) surface uppe	r layer ion shifts (in % of the bulk
lattice constant a_0).	
Matorial	

Material WO₃ ReO₃ BaZrO₃ CaTiO₃ SrTiO₃ Layer Ion WO₂-ter. ReO₂-ter. ZrO₂-ter. TiO₂-ter. TiO₂-ter. 1 В -2.07-3.19 -1.79-1.71-2.25 Ο +0.42-1.17-1.70-0.10-0.132 А No atom No atom +1.94+2.75+3.550 +0.11-0.32 +0.85+1.05+0.573 В -0.01-0.17-0.03Ο 0.00 0.00 -0.11_ _

(+1.5% of a_0)¹⁰³ are in fair agreement with the available RHEED (+2.6% of a_0)¹⁰⁴ and LEED (+2.1 ± 2% of a_0)¹⁰⁵ experiments. Our by B3PW functional *ab initio* computed SrTiO₃ (001) surface rumpling s (+2.12% of a_0) (Table VII) is in a perfect agreement with the LEED experiment $(+2.1 \pm 2\% \text{ of } a_0)^{105}$ and in a good agreement with the RHEED experiment (+2.6% of a_0).¹

Our B3PW ab initio computed interlayer enlargement between the 2 and 3 layer planes (Table VII) (+3.55% of a_0) for the TiO₂-terminated SrTiO₃ (100) surface is in a fair correspondence with all other available *ab initio*^{102,103} computations. It is important to stress that our ab initio B3PW computed interlayer expansion Δd_{23} (+3.55% of a_0) agrees qualitatively well with respect to the sign with RHEED experiment (+1.3% of a_0),¹⁰⁴ but has the opposite sign that the LEED experiment $(-1 \pm 1\% \text{ of } a_0)$.¹⁰⁵ Nevertheless, since the RHEED¹⁰⁴ and LEED¹⁰⁵ experiments have the opposite signs (+1.3 and -1 ± 1), we can not rely too strongly on these two RHEED and LEED experiments (Table VII) for the interlayer distance Δd_{23} between the SrTiO₃ second and third planes.

From Table VIII we can see that for the BaZrO₃, CaTiO₃, and SrTiO₃ perovskites, their B-O chemical bond populations in the bulk, according to our performed ab initio B3PW computations

TABLE VII. Ab initio computed surface rumplings s and relative displacements Δd_{ij} (% of a_0) for the upper 3 surface planes for the WO₂- and ReO₂-terminated WO₃ and ReO₃ as well as BO₂-terminated BaZrO₃, CaTiO₃, and SrTiO₃ (001) surfaces.

		WO ₂ -, Re	WO ₂ -, ReO ₂ -, BO ₂ -terminated (001) surfaces		
Material	Functional	S	Δd_{12}	Δd_{23}	
WO ₃	B3LYP	+2.49	_	_	
ReO ₃	B3LYP	+2.02	-	-	
BaZrO ₃	B3PW	+0.09	-3.73	+1.97	
CaTiO ₃	B3PW	+1.61	-4.46	+2.75	
SrTiO ₃	B3PW	+2.12	-5.79	+3.55	
SrTiO ₃	LDA ¹⁰²	+1.8	-5.9	+3.2	
	LDA ¹⁰³	+1.5	-6.4	+4.9	
	RHEED ¹⁰⁴	+2.6	+1.8	+1.3	
	LEED ¹⁰⁵	$+2.1 \pm 2$	$+1 \pm 1$	-1 ± 1	

		W-C	W–O, Re–O and B–O bond populations (in <i>e</i>)		
Material	Functional	Bulk	WO ₂ -, ReO ₂ -, BO ₂ -term. (001) surfaces		
WO ₃	B3LYP	+0.142	+0.108		
ReO ₃	B3LYP	+0.212	+0.170		
BaZrO ₃	B3PW	+0.108	+0.132		
CaTiO ₃	B3PW	+0.084	+0.114		
SrTiO ₃	B3PW	+0.088	+0.118		

TABLE VIII. Ab initio computed W–O, Re–O and B–O chemical bond populations (in e) for the WO₃, ReO₃, BaZrO₃, CaTiO₃ and SrTiO₃ crystal bulk as well as their

(+0.108e, +0.084e, and +0.088e, respectively), are considerably smaller than near their BO₂- terminated (001) surfaces (+0.132e, +0.114e, +0.118e, respectively) (Fig. 4). Just opposite situation is for the WO3 and ReO3 matrixes. Namely, the W-O and Re-O chemi-

cal bond populations, according to our B3LYP ab initio computations (Fig. 4), near their WO₂- and ReO₂-terminated WO₃ and ReO₃ (001) surfaces are considerably smaller (+0.108e and +0.170e, respectively) than in their bulk (+0.142e and +0.212e, respectively) (Table VIII). It is worth noting, that nevertheless the chemical bond populations in the WO₃ and ReO₃ matrixes for WO₂- and ReO₂-terminated (001) surfaces between the upper surface layer W and Re atoms and the second layer O atoms, namely W(I)-O(II) and Re(I)-O(II) (0.278e and 0.262e, respectively) are the absolutely largest chemical bond populations the WO₃ and ReO₃ materials.

Our ab initio B3LYP computed WO₃ bulk band gap (4.95 eV) at the Γ point is in fair agreement with the experimentally measured WO₃ bulk band gap at the Γ point 3.74 eV⁶⁶ (Table IX). Also for BaZrO₃ and SrTiO₃ perovskites, our *ab initio* B3PW computed bulk band gaps at the Γ point (4.93 and 3.96 eV, respectively) are in general agreement with the experimentally detected respective $BaZrO_3$ and $SrTiO_3$ band gaps (5.3 eV^{63} and 3.75 eV^{56} (Fig. 5). It is worth to note, that for all five our calculated materials, their bulk band gaps are always reduced near their BO2-terminated (001) surfaces (Table IX and Fig. 5).

TABLE IX. Ab initio computed band gaps at the Γ point (in eV) for the WO₃, ReO₃, BaZrO₃, CaTiO₃, and SrTiO₃ material bulk as well as their WO₂-, ReO₂- or BO₂-terminated (001) surfaces. Experimental data for the bulk band gaps at the Γ point (in eV) are listed for the comparison purpose in parentheses.

		Our computed Γ – Γ b	oand gap (in eV)
Material	Functional	Bulk (Experiment)	WO ₂ -, ReO ₂ -, BO ₂ -term. (001) surface
WO ₃	B3LYP	4.95 (3.74) ⁶⁶	1.16
ReO ₃	B3LYP	5.76 (not available)	0.22
BaZrO ₃	B3PW	$4.93 (5.3)^{63}$	4.48
CaTiO ₃	B3PW	4.18 (not available)	3.30
SrTiO ₃	B3PW	3.96 (3.75) ⁵⁶	3.95

5. CONCLUSIONS

According to our *ab initio* computations for the WO_2 - and ReO_2 -terminated WO_3 and ReO_3 (001) as well as BO_2 - terminated $BaZrO_3$, $CaTiO_3$, and $SrTiO_3$ (001) surfaces, all upper layer ions relax inwards, towards the crystal bulk, whereas all second layer ions relax upwards. The only two exceptions from this systematic tendency are top layer O ion upwards relaxation for the WO_2 -terminated WO_3 (001) surface as well as the second layer O ion inwards relaxation for the ReO_2 -terminated ReO_3 (001) surface.

Our *ab initio* computed SrTiO₃ (001) surface rumpling *s* (+2.12% of a_0) is in a fair agreement with RHEED (+2.6% of a_0) and LEED (+2.1 ± 2% of a_0) experimental results. Our *ab initio* computed surface rumplings *s* for WO₂ and ReO₂-terminated WO₃ and ReO₃ as well as BO₂-terminated BaZrO₃, CaTiO₃, and SrTiO₃ (001) surfaces are in a range from (+0.09% of a_0) for the ZrO₂-terminated BaZrO₃ (001) surface till (+2.49% of a_0) for the WO₂-terminated WO₃ (001) surface.

From our *ab initio* computations follow, that the Γ - Γ band gaps near the WO₂ and ReO₂-terminated WO₃ and ReO₃ (001) surfaces as well as near the BO₂-terminated BaZrO₃, CaTiO₃, and SrTiO₃ (001) surfaces always are reduced regarding their respective bulk Γ - Γ band gap values.

For our *ab initio* B3PW computed BO₂-terminated BaZrO₃, CaTiO₃, and SrTiO₃ (001) surfaces, the chemical bond covalency between the B–O ions is larger than in the bulk. Just opposite situation is for WO₂- and ReO₂-terminated WO₃ and ReO₃ (001) surfaces, where the W–O and Re–O chemical bond populations are smaller than in the bulk. Nevertheless, it is worth to note, that the absolutely largest chemical bond populations in the WO₃ and ReO₃ crystals are between the upper layer W atom and the second layer O atom (0.278*e*) as well as between the upper layer Re atom and the second layer O atom (0.262*e*).

ACKNOWLEDGMENTS

We are grateful for the financial support from Latvian-Ukraine cooperation Project No. Latvia–Ukraine LV-UA/ 2021/5. Our work was partially supported by the Latvian Councel of Science Grant No. 2021-5446. The Institute of Solid State Physics (ISSP) University of Latvia (Latvia) as the Centre of Excellence has received a funding from the European Union. In the Horizon 2020 Framework Programme (H2020)— WIDESPREAD01-2016-2017-Teamimg Phase2 under Grant Agreement No. 739508, project CAMART2.

REFERENCES

- ¹R. I. Eglitis and D. Vanderbilt, Phys. Rev. B 76, 155439 (2007).
- ²B. Meyer and D. Vanderbilt, Phys. Rev. B 63, 205426 (2001).
- ³N. Porotnikova, A. Farlenkov, S. Naumov, M. Vlasov, A. Khodimchuk, A. Fetisov, and M. Ananyev, Phys. Chem. Chem. Phys. 23, 11272 (2021).
- ⁴W. D. Mesquita, S. R. Jesus, M. C. Oliveira, R. A. P. Ribeiro, M. R. C. Santos,
- M. G. Junior, E. Longo, and M. F. C. Gurgel, Theor. Chem. Acc. 140, 27 (2021). ⁵S. Piskunov and R. I. Eglitis, Solid State Ionics 274, 29 (2015).
- ⁶E. A. Kotomin, S. Piskunov, Y. F. Zhukovskii, R. I. Eglitis, A. Gopejenko, and
- D. E. Ellis, Phys. Chem. Chem. Phys. **10**, 4258 (2008).
- ⁷M. G. Brik, C. G. Ma, and V. Krasnenko, Surf. Sci. 608, 146 (2013).
- ⁸R. I. Eglitis, J. Purans, A. I. Popov, and R. Jia, Symmetry 13, 1920 (2021).

- ⁹R. A. P. Ribeiro, M. C. Oliveira, A. G. Souza, M. R. D. Bomio, F. V. Motta, L. Gracia, S. R. Lazaro, E. Longo, and J. Andrés, J. Appl. Phys. **126**, 235301 (2019).
- ¹⁰L. Grigorjeva, D. K. Millers, V. Pankratov, R. T. Williams, R. I. Eglitis, E. A. Kotomin, and G. Borstel, Solid State Commun. **129**, 691 (2004).
- ¹¹N. V. Krainyukova and V. V. Butskii, Appl. Surf. Sci. 235, 32 (2004).
- ¹²M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
- ¹³H. J. Chun, Y. Lee, S. Kim, Y. Yoon, Y. Kim, and S. C. Park, Appl. Surf. Sci. 578, 152018 (2022).
- ¹⁴R. Eglitis, A. I. Popov, J. Purans, and R. Jia, Fiz. Nizk. Temp. **46**, 1418 (2020) [Low Temp. Phys. **46**, 1206 (2020)].
- ¹⁵W. Jia, V. S. Vikhnin, H. Liu, S. Kapphan, R. Eglitis, and D. Usvyat, J. Luminescence 83-84, 109 (1999).
- ¹⁶Y. Si, H. Liu, H. Yu, X. Jiang, and D. Sun, Surf. Coat. Technol. **431**, 128008 (2022).
- ¹⁷Y. Fan, Y. Liu, H. Cui, W. Wang, Q. Shang, X. Shi, G. Cui, and B. Tang, J. Nanomater. **10**, 2572 (2020).
- ¹⁸C. C. Mardare and A. W. Hassel, Phys. Status Solidi A 216, 1900047 (2019).
- ¹⁹I. Fatimah, R. N. Ilahi, and R. Pratami, IOP Conf. Ser. Mater. Sci. Eng. 299, 012034 (2018).
- ²⁰G. Ceder, <u>Science</u> 280, 1099 (1998).
- ²¹G. Ceder, Y. M. Chiang, D. R. Sadoway, M. K. Aydinol, Y. I. Jang, and B. Huang, Nature **392**, 694 (1998).
- ²²R. I. Eglitis and G. Borstel, Phys. Status Solidi A 202, R13 (2005).
- ²³R. I. Eglitis, Phys. Scr. **90**, 094012 (2015).
- ²⁴R. Eglitis, Int. J. Mod. Phys. B 33, 1950151 (2019).
- ²⁵W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. B 52, 6301 (1995).
- ²⁶R. I. Eglitis and A. I. Popov, J. Nano Electron. Phys. 11, 01001 (2019).
- ²⁷R. E. Cohen, Nature 358, 136 (1992).
- ²⁸R. I. Eglitis, E. A. Kotomin, A. I. Popov, S. P. Kruchinin, and R. Jia, Fiz. Nizk. Temp. 48, 87 (2022) [Low Temp. Phys. 48, 80 (2022)].
- ²⁹R. E. Cohen and H. Krakauer, Phys. Rev. B 42, 6416 (1990).
- 30 R. I. Eglitis, E. A. Kotomin, and G. Borstel, J. Phys. Condens. Matter 12, L431 (2000).
- ³¹E. Heifets, J. Ho, and B. Merinov, Phys. Rev. B 75, 155431 (2007).
- **32**R. I. Eglitis, Int. J. Mod. Phys. B **28**, 1430009 (2014).
- ³³F. M. Pontes, E. J. H. Lee, E. R. Leite, E. Longo, and J. A. Varela, J. Mater. Sci. 35, 4783 (2000).
- ³⁴C. J. Raub, A. R. Sweedler, M. A. Jensen, S. Broadston, and B. T. Matthias, Phys. Rev. Lett. 13, 746 (1964).
- ³⁵W. A. Kamitakahara, K. Scharnber, and H. R. Shanks, Phys. Rev. Lett. 43, 1607 (1979).
- ³⁶J. Falke, C. F. Chang, C. E. Liu, D. Takemagi, A. Melendez-Sans, C. S. Chen, L. Zhao, A. C. Komarek, C. Y. Kuo, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 103, 115125 (2021).
- ³⁷E. Heifets, R. I. Eglitis, E. A. Kotomin, J. Maier, and G. Borstel, Phys. Rev. B 64, 235417 (2001).
- ³⁸M. Zhong, W. Zeng, F. S. Liu, B. Tang, and Q. J. Liu, Surf. Interface Anal. 51, 1021 (2019).
- ³⁹X. Zhao and A. Selloni, Phys. Rev. Mater. 3, 015801 (2019).
- ⁴⁰C. G. Ma, V. Krasnenko, and M. G. Brik, J. Phys. Chem. Solids 115, 289 (2018).
- ⁴¹G. Borstel, R. I. Eglitis, E. A. Kotomin, and E. Heifets, Phys. Status Solidi B 236, 253 (2003).
- ⁴²A. F. Vassilyeva, R. I. Eglitis, E. A. Kotomin, and A. K. Dauletbekova, Physica B 405, 2125 (2010).
- 43 P. W. Tasker, J. Phys. C: Solid State Phys. 12, 4977 (1979).
- ⁴⁴M. Saghayezhian, S. M. R. Sani, J. Zhang, and E. W. Plummer, J. Phys. Chem. C 123, 8086 (2019).
- ⁴⁵H. Qu, B. Luo, S. Bian, and Z. Yue, Mater. Res. Express 7, 046305 (2020).
- ⁴⁶V. Solokha, D. Garai, A. Wilson, D. A. Duncan, P. K. Thakur, K. Hingerl, and J. Zegenhagen, J. Phys. Chem. C 123, 17232 (2019).
- 47C. Noguera, J. Phys. Condens. Matter 12, R367 (2000).

- ⁴⁸J. Goniakowski, F. Finocchi, and C. Noguera, Rep. Prog. Phys. 71, 016501 (2007).
- 49. I. Eglitis, J. Kleperis, J. Purans, A. I. Popov, and R. Jia, J. Mater. Sci. 55, 203 (2020).
- ⁵⁰F. Bottin, F. Finocchi, and C. Noguera, Phys. Rev. B 68, 035418 (2003).
- ⁵¹A. Pojani, F. Finocchi, and C. Noguera, Surf. Sci. 442, 179 (1999).
- ⁵²J. Goniakowski and C. Noguera, Surf. Sci. 323, 129 (1995).
- ⁵³R. I. Eglitis, J. Purans, and R. Jia, Crystals 11, 455 (2021).
- 54 R. I. Eglitis, J. Purans, J. Gabrusenoks, A. I. Popov, and R. Jia, Crystals 10, 745 (2020).
- ⁵⁵R. I. Eglitis, J. Purans, and R. Jia, Integr. Ferroelectr. 220, 9 (2021).
- ⁵⁶K. Benthem, C. Elsässer, and R. H. French, J. Appl. Phys. **90**, 6156 (2001).
- ⁵⁷B. Meyer, J. Padilla, and D. Vanderbilt, Faraday Discuss. 114, 395 (1999).
- 58 K. A. Müller and H. Burkard, Phys. Rev. B 19, 3593 (1979).
- ⁵⁹W. Zhong and D. Vanderbilt, Phys. Rev. B 53, 5047 (1996).
- ⁶⁰M. Sato, Y. Soejima, N. Ohama, A. Okazaki, H. J. Scheel, and K. A. Müller, Phase Trans. 5, 207 (1985).
- ⁶¹K. Ueda, H. Yanagi, R. Noshiro, H. Hosono, and H. Kawazoe, J. Phys. Condens. Matter **10**, 3669 (1998).
- 62 R. Ali and M. Yashima, J. Solid State Chem. 178, 2867 (2005).
- ⁶³J. Robertson, J. Vacuum Sci. Technol. B 18, 1785 (2000).
- ⁶⁴M. D. Mathews, E. B. Mirza, and A. C. Momin, J. Mater. Sci. Lett. 10, 305 (1991).
- ⁶⁵J. A. Perri, E. Banks, and B. Post, J. Appl. Phys. 28, 1272 (1957).
- ⁶⁶F. P. Koffyberg, K. Dwight, and A. Wold, Solid State Commun. **30**, 433 (1979).
- ⁶⁷C. Balászi, M. Farkas-Jahnke, I. Kotsis, L. Petrás, and J. Pfeifer, Solid State Ion. 141–142, 411 (2001).
- 68X. Liu and H. Q. Fan, Royal Soc. Open Sci. 5, 171921 (2018).
- ⁶⁹T. Chatterji, T. C. Hansen, M. Brunelli, and P. F. Henry, Appl. Phys. Lett. 94, 241902 (2009).
- ⁷⁰J. E. Jørgensen, J. S. Olsen, and L. Gerward, J. Appl. Crystallogr. 33, 279 (2000).
- ⁷¹T. Chatterji and G. McIntyre, Solid State Commun. 139, 12 (2006).
- 72 L. F. Mattheiss, Phys. Rev. 181, 987 (1969).
- 73 L. F. Mattheiss, Phys. Rev. B 2, 3918 (1970).
- 74 L. F. Mattheiss, Phys. Rev. B 6, 4718 (1972).
- 75 H. W. Myron, R. P. Gupta, and S. H. Liu, Phys. Rev. B 8, 1292 (1973).
- ⁷⁶M. G. Stachiotti, F. Corá, C. R. A. Catlow, and C. O. Rodriguez, Phys. Rev. B 55, 7508 (1997).

- 77 F. Cora, M. Stachiotti, C. Catlow, and C. Rodriguez, J. Phys. Chem. B 101, 3945 (1997).
- 78J. E. Schirber and B. Morosin, Phys. Rev. Lett. 42, 1485 (1979).
- 79 J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).
- **80**J. P. Perdew and Y. Wang, Phys. Rev. B **40**, 3399 (1989).
- ⁸¹J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
- 82C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
- ⁸³V. R. Saunders, R. Dovesi, C. Roetti, N. Causa, N. M. Harrison, R. Orlando, and C. M. Zicovich-Wilson, *CRYSTAL-2009 User Manual* (University of Torino, Italy, 2009).
- ⁸⁴H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- ⁸⁵G. W. Rubloff, Phys. Rev. B 5, 662 (1972).
- ⁸⁶J. Thomas, G. Stephan, J. C. Lemonnier, M. Nisar, and S. Robin, Phys. Status Solidi B 56, 163 (1973).
- ⁸⁷V. M. Lisitsyn, L. A. Lisitsyna, A. I. Popov, E. A. Kotomin, F. U. Abuova, A. Akilbekov, and J. Maier, Nucl. Instrum. Methods B 374, 24 (2016).
- ⁸⁸S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Comput. Mater. Sci. 29, 165 (2004).
- ⁸⁹R. I. Eglitis and A. I. Popov, J. Saudi Chem. Soc. 22, 459 (2018).
- 90 H. Shi, R. I. Eglitis, and G. Borstel, Phys. Rev. B 72, 045109 (2005).
- ⁹¹H. Shi, L. Chang, R. Jia, and R. I. Eglitis, J. Phys. Chem. C 116, 4832 (2012).
- ⁹²R. Dovesi, R. Orlando, C. Roetti, C. Pisani, and V. R. Saunders, Phys. Status Solidi B 217, 63 (2000).
- 93 A. Pojani, F. Finocchi, and C. Noguera, Appl. Surf. Sci. 142, 177 (1999).
- ⁹⁴F. Cora, A. Patel, N. M. Harrison, R. Dovesi, and C. R. A. Catlow, J. Am. Chem. Soc. 118, 12174 (1996).
- 95 I. Mayer, Int. J. Quantum. Chem. 26, 151 (1984).
- ⁹⁶R. C. Bochicchio and H. F. Reale, J. Phys. B 26, 4871 (1993).
- 97 R. I. Eglitis and S. Piskunov, Comput. Condens. Matter 7, 1 (2016).
- ⁹⁸D. Millers, L. Grigorjeva, V. Pankratov, V. A. Trepakov, and S. E. Kapphan, Nucl. Instrum. Methods B **194**, 469 (2002).
- 99R. I. Eglitis, J. Phys. Condens. Matter 19, 356004 (2007).
- ¹⁰⁰R. I. Eglitis and D. Vanderbilt, Phys. Rev. B 78, 155420 (2008).
- ¹⁰¹R. I. Eglitis and D. Vanderbilt, Phys. Rev. B 77, 195408 (2008).
- ¹⁰²J. Padilla and D. Vanderbilt, Surf. Sci. **418**, 64 (1998).
- ¹⁰³C. Cheng, K. Kunc, and M. H. Lee, Phys. Rev. B 62, 10409 (2000).
- ¹⁰⁴T. Hikita, T. Hanada, M. Kudo, and M. Kawai, Surf. Sci. 287-288, 377 (1993).
- ¹⁰⁵N. Bickel, G. Schmidt, K. Heinz, and K. Müller, Phys. Rev. Lett. **62**, 2009 (1989).