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Abstract: We consider the effect of atomic impurities on the energy spectrum and electrical conductance
of graphene. As is known, the ordering of atomic impurities at the nodes of a crystal lattice modifies
the graphene spectrum of energy, yielding a gap in it. Assuming a Fermi level within the gap domain,
the electrical conductance diverges at the ordering of graphene. Hence, we can conclude about the
presence of a metal–dielectric transition. On the other hand, for a Fermi level occurring outside of the
gap, we see an increase in the electrical conductance as a function of the order parameter. The analytic
formulas obtained in the Lifshitz one-electron strong-coupling model, describing the one-electron
states of graphene doped with substitutional impurity atoms in the limiting case of weak scattering,
are compared to the results of numerical calculations. To determine the dependence of the energy
spectrum and electrical conductance on the order parameter, we consider both the limiting case of
weak scattering and the case of finite scattering potential. The contributions of the scattering of
electrons on a vapor of atoms to the density of states and the electrical conductance of graphene with
an admixture of interstitial atoms are studied within numerical methods. It is shown that an increase
in the electrical conductance with the order parameter is a result of both the growth of the density
of states at the Fermi level and the time of relaxation of electron states. We have demonstrated the
presence of a domain of localized extrinsic states on the edges of the energy gap arising at the ordering
of atoms of the admixture. If the Fermi level falls in the indicated spectral regions, the electrical
conductance of graphene is significantly affected by the scattering of electrons on clusters of two or
more atoms, and the approximation of coherent potential fails in this case.

Keywords: graphene; energy gap; density of states; electrical conductance; impurity concentration;
ordering parameter; metal–insulator transition

1. Introduction

Modifications of graphene with impurities, defects, and chemical functional groups are of
increasing interest, as they change the physical properties of graphene and make it a basic
system, generating a new class of functional materials. Such materials can be supposedly used
in nanoelectromechanical systems, systems of accumulation of hydrogen, etc. as competitors of silicon
in electronic devices, though the quasirelativistic spectrum of charge carriers in graphene hampers its
application, for example, in field transistors due to the absence of a gap in its spectrum. However, it is
worth noting that the impurities can induce the appearance of such a gap.
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Indeed, within the self-consistent meta-gradient approximation and the method of projection of
adjoint waves [1], the numerical calculations executed by this method showed the opening of a gap in
the energy spectrum of graphene due to the presence of an impurity. The electronic structures of the
isolated monolayer of graphene, two- and three-layer graphene, and graphene grown on ultrathin
layers of hexagonal boron nitride (h-BN) were calculated in [2] in the frame of the pseudopotential
method. It was shown that a forbidden energy band 57 meV in width appears in graphene grown on a
monolayer of h-BN.

Similar calculations for graphene with impurities of aluminum, silicon, phosphorus, sulfur, boron,
nitrogen, and lithium were executed in works [3,4], where the opening of a gap was demonstrated,
in particular.

It is clear that the numerical calculations should be supported by a simple but adequate model
presenting the exact analytic solutions. The theory of the modification of the spectrum of graphene
caused by an increase in the concentration of point impurities was developed in works [5–7], where the
possibility of the metal–dielectric transition was predicted, and the dominant role of a quasigap filled
by localized states in the scattering by pairs and triples of impurity centers was indicated.

The Kubo–Greenwood quantum-mechanical formalism in the Lifshitz one-band model was
applied in [8–13] to study the influence of impurity atoms or atoms adsorbed on the surface on the
electronic structure and electrical conductance of graphene. There, the method of the reduction of the
Hamiltonian to the three-diagonal form was developed to study the influence of completely ordered
impurity atoms on the energy spectrum and electrical conductance of graphene. In work [10], it was
found that a gap of 0.45 eV in width appears in the energy spectrum of electrons of graphene deposited
on a potassium substrate. It was assumed that the appearance of this gap is associated with a change
in the symmetry of the crystal. This assumption was confirmed in work [14], where the influence of
the atomic ordering on the energy spectrum and electrical conductance of an alloy was analytically
studied. It was established [14] that, for a long-range ordering of the alloy, a gap arises in the energy
spectrum of electrons. It was also found that, in the case where the Fermi level falls in the domain of
the gap and at a long-range atomic ordering, a metal–dielectric transition appears in the alloy.

We note that, having the Fermi level falling in the gap domain, the velocity of an electron can
lower its speed on such a level. This leads to a decrease in the mobility of electrons and in the electrical
conductance, which can worsen the functional characteristics of graphene.

Introducing the notation η as the ordering parameter, δ. as the difference in the scattering potentials
of impurity atoms and carbon, and y as the impurity concentration, it was established in Ref. [15]
that a gap with width η|δ| and positioned at point yδ arises in the graphene energy spectrum, as a
consequence of the ordering of substitutional atoms at nodes of the crystal lattice. Assuming a Fermi
level within the gap domain, at the ordering of graphene, the electrical conductance diverges; hence,
we can conclude that we are in the presence of a metal–dielectric transition. On the other hand, for a
Fermi level occurring outside of the gap, we see an increase in the electrical conductance as a function
of the order parameter η. As (η→ 1) at the concentration y = 1/2, the electrical conductance of
graphene σαα →∞ , i.e., graphene transits into the state of ideal conductance.

It is worth indicating the different nature of a gap in the energy spectrum of graphene related to edge
effects. Work [16] presents an experimental study of the appearance of the energy gap in armchair-like
graphene nanoribbons, which increases as the nanoribbon width decreases. In works [17,18] in
the model of strong coupling, selection rules for optical transitions between the valence and the
conductance zones were determined for armchair and zigzag graphene nanoribbons. Electron and
optical properties of inhomogeneous two-layer graphene nanoribbons in the external magnetic field
were considered in [19]. Based on the results of numerical calculations, it was shown there that
the electron and optical properties of nanoribbons depend strongly on the competition between the
magnetic quantization, width of nanoribbons, and arrangement configuration of such nanoribbons.
Work [20] gives a review of the electron and optical properties of graphene nanoribbons in magnetic
and electric fields with regard to the effects of side limitation, curvature, and structural inhomogeneities.
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The theoretically predicted parabolic subzones, edge-localized states, opening of a gap, and Landau’s
subzones were identified by various experimental measurements.

In recent times, several tens of works have been published on the influence of various types
of deformations on the electron properties of (mainly, defectless) graphene (see, e.g., review [21]).
The results of the first calculations within density functional theory [22] asserted that even small
deformations can cause the appearance of a forbidden zone. The calculations in the model of strong
coupling and linear elasticity theory [23] showed that the forbidden zone appears only at the tensile
deformations (~23%) close to the rupture deformation (≈27%). Thus, many questions remain open and
require subsequent discussion.

The goal of the present work is to clarify the nature of the influence of the ordering of a substitutional
impurity on the appearance of a gap in the energy spectrum and on the electric conductance of graphene.

The conclusions in work [15] were based on the results of analytical studies of the energy spectrum
and electrical conductance of graphene performed in the approximation of the coherent potential.
However, the domain of convergence of the cluster expansion used in [15] for a Green’s function and
the domain of validity of the approximation of the coherent potential were not analyzed.

In the present work, we will consider the interconnection between a change in the electrical
conductance, changes in the energy spectrum, and the decay time for electron states under the ordering
of impurity atoms in graphene.

2. Theoretical Model

The Hamiltonian in the Lifshitz one-electron strong-coupling model describing the one-electron
states of graphene doped with substitutional impurity atoms can be presented in the following
form [15]:

H =
∑

ni
|ni〉vni〈ni|+

∑
ni,n′i′,ni

|ni〉hni,n′i′
〈
n′i′

∣∣∣, (1)

where hni,n′i′ is a nondiagonal matrix element of the Hamiltonian (hopping integral) in the Wannier
representation and is independent of the random arrangement of atoms in the approximation of
diagonal disorder; νni is a diagonal matrix element taking the values νA or νB depending on that which
the atoms A or B is placed at node ni; n is the number of an elementary cell, and i is the number of a
node of the sublattice in the elementary cell.

Let us add to and subtract the translationally invariant operator
∑

ni|ni〉σi〈ni| from Equation (1),
where σi is a diagonal matrix element of the Hamiltonian of some effective ordered medium (coherent
potential), depending on the sublattice number. As a result, the Hamiltonian of graphene reads

H = H̃ + Ṽ
H̃ =

∑
ni
|ni〉σi〈ni|+

∑
ni,n′i′,ni

|ni〉hni,n′i′〈n′i′|

Ṽ =
∑

ni ṽni, ṽni = |ni〉(vni − σi)〈ni|..

(2)

The formula for the coherent potential will be given below.
The retarded Green’s function of graphene, which is an analytic function in the upper half-plane

of values of the complex energy z, is defined as

G(z) = (z−H)−1. (3)

A Green’s function satisfies the equation

G = G̃ + G̃TG̃, (4)

where
G̃ = (z− H̃)

−1
, (5)
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is the Green’s function of the effective medium corresponding to the Hamiltonian H̃ in Equation (2).
The scattering T-matrix can be presented in the form of an infinite series [15]:

T =
∑

(n1i1)
tn1i1 +

∑
(n1i1),(n2i2)

T(2) n1i1,n2i2 + . . . . (6)

Here,

T(2) n1i1,n2i2 =
[
I − tn1i1G̃tn2i2G̃

]−1
tn1i1G̃tn2i2

[
I + G̃tn1i1

]
, (7)

where
tn1i1 =

[
I,−, ṽin, G̃

]−1
ṽin (8)

is the operator of scattering on one node, and I is the identity operator.
The terms of Equation (6) describe the processes of multiple scattering of electrons on clusters

comprising one, two, three, etc. scattering centers.
In work [15], it was shown that the contributions of the processes of the scattering of electrons on

clusters to the density of states and to the electrical conductance decrease and are guided by some
small parameter γi(ε) [24], as the number of atoms in a cluster increases. The formula for γi(ε) will be
presented in the following.

Neglecting the contributions of the processes of scattering on clusters of three or more atoms,
which are small due to the parameter γi(ε), we give the density of one-electron states of graphene in
the following form [15]:

g(ε) = 1
v
∑
i,λ

Pλ0igλ0i(ε)

gλ0i(ε) = − 2
π Im

{
G̃ + G̃ tλ0iG̃ +

∑
(l j) , (0i)

λ′

Pλ′l j/λ0i
×

×G̃
[
tλ
′l j + T(2)λ 0i,λ′l j

]
G̃
}
0i,0i

(9)

where ν = 2 is the number of sublattices of graphene.
Using the Kubo–Greenwood formula [25] and neglecting the contribution of the processes of

scattering on clusters of three and more atoms, we write the static electrical conductance of graphene
(at T = 0) as [15]

σαβ = −
e2}

2πΩ1

∑
s,s′=+,−

(2δss′ − 1)
∑
i

{[
vβK̃

(
εs, vα, εs′

)]
+

+
∑
λ

Pλ0iK̃
(
εs′ , vβ, εs

)
(tλ0i(εs)K̃

(
εs, vα, εs′

)
tλ0i

(
εs′

)
+

+
λ∑
λ

Pλ0i ∑
l j , 0i,
λ′

Pλ
′l j/λ0i

[
[K̃

(
εs′ , vβ, εs

)
vαG̃

(
εs′

)
]×

×T(2)λ0i,λ′l j
(
εs′

)
+

+
[
K̃
(
εs, vα, εs′

)
vβG̃(εs)

]
T(2)λ 0i,λ′l j(εs)+

+K̃
(
εs′ , vβ, εs

)[
tλ
′l j(εs)K̃

(
εs, vα, εs′

)
tλ0i

(
εs′

)
+

+
(
tλ0i(ε

s) + tλ
′

l j (ε
s)
)
K̃
(
εs, vα, εs′

)
T(2)λ0i,λ′l j

(
εs′

)
+

+T(2)λ′l j,λ 0i(εs)K̃
(
εs, vα, εs′

)
tλ0i

(
εs′

)
+

+T(2)λ′l j,λ 0i(εs)K̃
(
εs, vα, εs′

)
T(2)λ 0i,λ′l j

(
εs′

)
+

+ T(2)λ′l j,λ 0i(εs)K̃
(
εs, vα, εs′

)
T(2)λ′l j,λ 0i

(
εs′

)]]}
0i,0i

∣∣∣∣
ε=µ

.

(10)
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K̃
(
εs, vα, εs′

)
= G̃(εs)vαG̃

(
εs′

)
, G̃(ε+) = G̃r(ε), G̃

(
ε−1

)
= G̃a(ε) =

(
G̃r

)∗
(ε), and G̃r(ε) and G̃a(ε) are

the retarded and advanced Green’s functions, respectively; Ω1 = 2Ω0 is the volume of an elementary
cell of graphene, Ω0 is the volume per atom, } is Planck’s constant, and

G̃njn′ j′(ε) =
1
N

∑
k

G̃ j j′(k, ε)exp(ik
(
rn′ j′ − rnj

)
) (11)

where G̃ j j′(k, ε) is the Fourier transform of the Green’s function of an effective medium, and rnj is the
radius-vector of node nj. The wave vector k varies in the limits of the Brillouin zone of graphene.

The operator of the electron velocity projection α is given by

υαii′(k) =
1
}
∂hii′(k)
∂kα

, (12)

where h j j′(k) is the Fourier transform of the hopping integral. We calculate hii′(k) in the approximation
of the nearest neighbors:

h j j′(k) = h1

∑
n′,n

exp(ik
(
rn′ j′ − rnj

)
), (13)

where h1 = (ppπ) is the hopping integral [26] and rnj is the radius-vector of node jn.
The Fermi level µ is determined from the relation

〈Z〉 =
∫ µ

−∞

g(ε) dε, (14)

where 〈Z〉 is the mean number of electrons per atom whose energies belong to the energy zone.
In Equations (9) and (10), Pλ0i is the probability of the filling of node 0i of the crystal sublattice

i = 1, 2 by atoms of the sort λ = A, B. We have

PB01 = y1 = y +
1
2
η, PB02 = y2 = y−

1
2
η, PA0i = 1− PB0i, (15)

where y is the concentration of impurity atoms and η is the long-range atomic order parameter.
In Equations (9) and (10), Pλ

′l j/λ0i is the probability of the filling of node l j by atoms of the sort λ′
under the condition that an atom of the sort λ occupies node 0i (the parameter of binary interatomic
correlations in the filling of nodes of the crystal lattice by impurity atoms).

The probabilities are determined by the interatomic pair correlations εBB
lj0i via [27,28]

Pλ′/λl j0i = Pλ′l j +
εBB

lj0i

Pλ0i

(δλ′B − δλ′A)(δλB − δλA), (16)

where δ is the Kronecker delta function. Note that the interatomic pair correlations also satisfy
the relation

εBB
lj0i =

〈(
cB

lj − cB
j

)(
cB

0i − cB
i

)〉
. (17)

Here, cB
lj is a random number equal to 1, if an atom of the sort B occupies node lj, or to zero in the

opposite case; сB
j = 〈cB

0j〉 = PB0j. The brackets mean the averaging over the distribution of impurity
atoms at nodes of the crystal lattice.

The coherent potential can be determined from the condition
〈
tn1i1

〉
= 0, which yields the

equation [15]
σi = 〈υi〉 − (υA − σi)G̃0i,0i(ε)(υB − σi);

〈υi〉 = (1− yi)υA + yiυB.
(18)
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Setting υA = 0, we obtain
〈υi〉 = yiδ, (19)

where
δ = υB − υA, (20)

is the difference of the scattering potentials for the components of graphene.
Solving the system of Equations (11) and (18), we find the values of the coherent potential σi.
In the limiting case of weak scattering |δ/w| � 1, where w = 3|h1| is the half-width of the energy

zone of pure graphene, the given theoretical model admits analytic solutions [14]. It was established
that the arising gap η|δ| in width is centered at the point yδ.

Equation (15) implies that the maximum order parameter ηmax. For δ > 0 and δ < 0, the gap is
placed, respectively, to the right and left of the Dirac point on the energy scale.

At the electron concentration 〈Z〉 (Equation (14)), at which the Fermi level falls in the arising gap,
the electrical conductance tends to zero at the ordering of an impurity, σαα → 0 , i.e., a metal–dielectric
transition occurs [15].

At the electron concentration 〈Z〉 (Equation (14)) such that the Fermi level is outside the arising
gap, the electrical conductance increases with the order parameter η [15]. As the order parameter η
tends to its maximum value ηmax, the electrical conductance diverges, σαα →∞ , i.e., graphene transits
in the state of ideal conductance.

We recall that the contributions of the processes of the scattering of electrons on clusters to the
density of states and to the electrical conductance decrease and are guided by some small parameter
γi(ε) [24], as the number of atoms in a cluster increases. This parameter is

γi(ε) =

∣∣∣∣∣∣∣
〈(

toi(ε)
)2

〉 ∑
l j,0i

G̃oi,l j(ε)G̃l j,oi(ε)

∣∣∣∣∣∣∣〈(
toi(ε)

)2
〉
= (1− yi)

(
tAoi

(ε)
)2
+ yi

(
tBoi

(ε)
)2

.

(21)

The parameter γi(ε) can be represented in the form [14]

γi(ε) =
∣∣∣Pi(ε)/(1 + Pi(ε))

∣∣∣
Pi(ε) = −

〈
(t0i(ε))

2
〉

1+
〈
(t0i(ε))2〉(G̃0i,0i(ε))

2

 1

1+
〈
(t0i(ε))2〉(G̃0i,0i(ε))

2
d
dε G̃0i,0i(ε) +

(
G̃0i,0i(ε)

)2
 (22)

Using formula G̃0i,0i(ε) obtained in [14] in the limiting case of weak scattering |δ/w| � 1, it can be
shown that the parameter γi(ε) takes values 1/2 ≤ γi(ε) ≤ 1 in a narrow interval of energies in the
energy gap: ∣∣∣∣∣∣∆ε′(η)w

∣∣∣∣∣∣ = 27
π

(
y2
−

1
4
η2

)
((1− y)2

−
1
4
η2)η

(
δ
w

)5
. (23)

The parameter γi(ε) is small except for the narrow energy intervals (Equation (23)) on the gap
edges. As the value of the energy tends to the gap edge, dG̃0i,0i(ε)/dε→∞ [14], whereas the parameter
γi(ε)→ 1 (Equation (22)).

Thus, the processes of scattering on clusters give a significant contribution to the density of states
at the energies of electrons lying in interval (Equation (23)). The product σxx·d enters the formula for
the electrical resistance of a graphene layer

R =
1
σxxd

l
L

, (24)
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where l is the length of a graphene layer along the axis x, and L is the layer width. Here, d is the
thickness of graphene. The axis x is directed from a carbon atom to its nearest neighbor. The values of
σxx·d are given in units of e2

· }−1.
To establish the nature of the dependence of the electrical conductivity σαα on the order parameter

η, we consider both the limiting case of weak scattering, |δ/w| � 1, and the case of a finite value of the
scattering potential δ/w.

If the order parameter η tends to its maximum value, η→ ηmax , the nodes of sublattice 2 are
mainly occupied by carbon atoms. In this case, Equations (15) and (18) imply that the imaginary part
of the coherent potential for this sublattice tends to zero, σ′′2 (µ)→ 0 , and the formula for the electrical
conductance (Equation (10)) in the approximation of coherent potential takes the form

σαα =
e2}
3Ω0

g2(µ)
∣∣∣υα12(µ)

∣∣∣2∣∣∣σ′′2 (µ)∣∣∣ , (25)

where g2(µ) is the partial density of states for the second sublattice.
For the three-dimensional crystals with a simple lattice in the approximation of effective mass,

Equation (25) with the corresponding g(µ) and υα(µ) takes the well-known form

σαα = e2nτ(µ)/m∗, (26)

where n is the number of electrons in unit volume with energies less than the Fermi level, m∗ is the
effective mass of an electron, and τ(µ) is the relaxation time of electron states, which is defined by
the relation ∣∣∣σ′′ (µ)∣∣∣τ(µ) = }. (27)

3. Results

In Figure 1, we present the results of numerical calculations of the density of states of graphene
g(ε) by Equation (9) at the substitutional impurity concentration y = 0.2 and different values of
the scattering potential [δ/w = −0.2 (a), δ/w = −0.6 (b)] and the parameter of binary interatomic
correlations on the first coordinate sphere. The energy is given in units of the energy zone half-width w.

Figure 1. Dependence of the density of electron states g(ε) on the energy ε at the concentration of a
substitutional impurity y = 0.2, for different values of the parameter of binary interatomic correlations
on the first coordinate sphere εBB

lj0i = ε
BB, η = 0, and values of the scattering potential: (a) δ/w = −0.2,

(b) δ/w = −0.6. The density of electron states calculated in the approximation of coherent potential
is shown by a continuous curve with regard to the processes of scattering on the pairs of atoms in
the limits of the first coordinate sphere; the dotted curve corresponds to εBB = 0, the dashed line to
εBB = −0.05, and the dash-dotted curve to εBB = −0.1.

It is seen from Figure 1b that the appearance of the interatomic correlations is accompanied by the
appearance of a characteristic burst on the curve of the energy dependence of the density of electron
states. Its value increases with the parameter of correlations εBB. The curves describing the density of
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electron states in the approximation of coherent potential with regard to the processes of scattering
on the pairs of atoms in Figure 1a practically coincide for small values of the scattering parameter
δ/w = −0.2.

In Figure 1b, the continuous curve describes the density of electron states g(ε) of graphene, which
is calculated in the approximation of coherent potential according to the first term in Equation (9). The
dotted curve gives the density of states g(ε) calculated with regard to the processes of scattering on the
pairs of atoms located in the limits of the first coordinate sphere in the case of the completely disordered
arrangement of impurity atoms, εBB = 0, η = 0. The values of the density of states g(ε), calculated
with regard to the processes of scattering on the pairs of atoms in the limits of three coordinate spheres
and in the limits of ten coordinate spheres, practically coincide with the results of calculations that
consider the scattering on the pairs in the limits of the first coordinate sphere. Thus, we may conclude
that the domain of electron states of an impurity in graphene in the model under study is spatially
bounded by the first coordinate sphere.

In Figures 2 and 3, we show the density of electron states g(ε) and the electrical conductance σxx(µ)
as functions of the energy ε and the Fermi level µ, respectively; d means the thickness of a graphene
layer. The calculations of g(ε) and σxx(µ) are carried out by Equations (9) and (10). The values of the
energy ε and the Fermi level µ are given in units of the energy zone half-width w. The substitutional
impurity concentration y = 0.2, the order parameter η = 0.3, the parameter of binary interatomic
correlations εBB = 0, the scattering potential δ/w = −0.2 (Figure 2), and δ/w = −0.6 (Figure 3).

Figure 2. Dependence of (a) the density of electron states g(ε) on the energy ε; (b) the electrical
conductance σxx(µ) on the Fermi level µ, where d is the thickness of a graphene layer; and (c) the
electrical conductance σxx(µ) on the Fermi level µ (shown on a larger scale). The substitutional impurity
concentration y = 0.2, the scattering potential δ/w = −0.2, the order parameter η = 0.3, and the
parameter of binary interatomic correlations εBB = 0. The blue curve shows the results of calculations
in the approximation of coherent potential, while the red curve shows those with regard to the processes
of the scattering of electrons on the pairs of atoms of the first coordinate sphere.
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Figure 3. Dependence of (a) the density of electron states g(ε) on the energy ε; (b) the electrical
conductance σxx(µ) on the Fermi level µ, where d is the thickness of a graphene layer; and (c) the
electrical conductance σxx(µ) on the Fermi level µ (shown on a larger scale). The substitutional impurity
concentration y = 0.2, the scattering potential δ/w = −0.6, the order parameter η = 0.3, and the
parameter of binary interatomic correlations εBB = 0. The blue curve shows the results of calculations
in the approximation of the coherent potential, while the red curve shows those with regard to the
processes of the scattering of electrons on the pairs of atoms of the first coordinate sphere.

Figures 2 and 3 indicate that, at the ordering of impurity atoms, there appears a gap in the energy
spectrum of graphene in which the density of states g(ε) = 0 (Figure 2a). The electrical conductance of
graphene σxx(µ) for the Fermi level located in the gap is equal to zero. For the Fermi level outside the
gap, the electrical conductance of graphene is nonzero and increases with the density of states on the
Fermi level.

As distinct from the above-described limiting case of weak scattering |δ/w| � 1, where the gap
width increases with the scattering potential δ, the dependence of the gap width on δ in the case
of strong scattering has a more complex character. As the absolute value of the scattering potential
increases from |δ/w| = 0.2 to |δ/w| = 0.6, the gap width decreases a little. The dependences of
the electrical conductance on the scattering potential δ and the order parameter η also have a more
complicated character than in the limiting case of weak scattering |δ/w| � 1 [14].

With the purpose to clarify the character of the dependence of the electrical conductance σxx

on the scattering potential δ and the order parameter η, we present the dependence of the electrical
conductance of graphene σxx on the order parameter of impurity atoms η for different values of the
scattering potential δ in Figures 4 and 5. The number of electrons per atom, whose energies are in
the energy zone, is equal to 〈Z〉 = 1.01. For such value of 〈Z〉, the Fermi level µ(η) calculated by
Equation (14) lies to the right of the energy gap. In Figures 4b and 5b, we show the Fermi level µ(η) as
a function of the order parameter of an impurity η. In Figures 4c and 5c, we give the dependence of
the partial density of states gi(µ) at the Fermi level on the order parameter of an impurity η; i = 1, 2 is
the number of a sublattice. Figures 4d and 5d present the dependence of the imaginary part of the
coherent potential σ′′i (µ) at the Fermi level on the order parameter of impurity atoms η.
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Figure 4. Dependence of (a) the electrical conductance of graphene σxx; (b) the Fermi level µ; (с) the
partial density of states gi(µ) at the Fermi level; and (d) the imaginary part of the coherent potential
σ′′i (µ) at the Fermi level on the order parameter of impurity atoms η. The substitutional impurity
concentration y = 0.2 and the scattering potential δ/w = −0.2. Circles correspond to g1(µ) and σ′′1 (µ)
of the first sublattice, in which the impurity atoms are located in the case of full order. Filled circles
show g2(µ) and σ′′2 (µ) for the second sublattice.

Figure 5. Dependence of (a) the electrical conductance of graphene σxx; (b) the Fermi level µ; (с) the
partial density of states gi(µ) at the Fermi level; and (d) the imaginary part of the coherent potential
σ′′i (µ) at the Fermi level on the order parameter of impurity atoms η. The substitutional impurity
concentration y = 0.2 and the scattering potential δ/w = −0.6. Circles correspond to g1(µ) and σ′′1 (µ)
of the first sublattice, in which the impurity atoms are located in the case of full order. Filled circles
show g2(µ) and σ′′2 (µ) for the second sublattice.
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It is seen from Figures 4 and 5 that the electrical conductance of graphene increases with the order
parameter of an impurity η.

The numerical results presented in Figures 4 and 5 for the electrical conductance σxx agree
qualitatively with the formula obtained in the limiting case of weak scattering |δ/w| � 1 [14] and with
Equation (25). In this case, we took into account that the dependence of the electrical conductance
of graphene, which was obtained in the limiting case of weak scattering [14], on the ordering of an
admixture is applicable only in the case of such concentration at which the Fermi level lies in the
vicinity of the Dirac point. In the present work, we give the results of numerical calculations of the
dependence of the electrical conductance of graphene σxx on the ordering parameter η. We have
considered such values of concentrations and scattering potentials, at which the Fermi level lies in the
vicinity of the Dirac point, as well as outside it.

As the order parameter η tends to the maximum value, η→ ηmax , the electrical conductance
σxx →∞ . As is seen from Equation (25), this is caused by an increase in the density of states at the
Fermi level g2(µ) and in the relaxation time with the order parameter η [as η→ ηmax , the imaginary
part of the coherent potential σ′′2 (µ)→ 0].

4. Conclusions

We note that values of the density of states and the electrical conductance of graphene cannot be
used, if the Fermi level falls in the interval (Equation (23)) of energies at the gap edges. The values of
the density of states g(ε) calculated with regard to the processes of scattering on the pairs of atoms
located in the limits of three coordinate spheres and in the limits of ten coordinate spheres practically
coincide with the results of calculations involving the scattering on the pairs located in the limits of
the first coordinate sphere. Thus, we may conclude that the domain of electron states of the impurity
in graphene in the model under consideration is spatially bounded by the first coordinate sphere.
We showed the existence of domains with localized extrinsic states on the edges of the energy gap
arising at the ordering of atoms of the admixture. If the Fermi level falls in the indicated domains,
the processes of the scattering of electrons on clusters consisting of at least two atoms contribute
essentially to the electrical conductance of graphene, and the approximation of coherent potential fails
in this case.

We have established that, at the ordering of impurity atoms, a gap appears in the energy spectrum
of graphene. Its width depends on the order parameter η and the difference in the scattering potentials
δ of an impurity atom and a carbon atom.

In the limiting case of weak scattering |δ/w| � 1, we have shown that the gap arising at the
ordering of impurity atoms in the energy spectrum of graphene has a width of η|δ| and is centered at
the point yδ, where w is the energy zone half-width of pure graphene.

At the electron concentration 〈Z〉 (Equation (14)), when the Fermi level falls in the arising gap,
the electrical conductance tends to zero at the ordering of an impurity, σxx → 0 , i.e., a metal–dielectric
transition arises.

If the Fermi level lies outside the gap, the electrical conductance σxx increases with the order
parameter η and tends to infinity, as the order parameter η→ ηmax .

An increase in the electrical conductance σxx of graphene with the order parameter η of impurity
atoms is caused by an increase in the density of states at the Fermi level, g(µ), and by an increase in
the relaxation time of electron states, τ(µ), tending to infinity, as η→ ηmax .
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