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Abstract. We investigate properties of nanosize two-gap superconductivity by using a two-
sublevel model in the framework of a mean field approximation. A model corresponding to
a nanosize two-gap superconductivity is presented, and the partition function of the nanosize
system is analytically derived by using a path integral approach. A definition of the critical
level spacing of the two-gap superconductivity is also presented, and we discuss condensation
energy and parity gap of the two-gap superconductivity in relation to the size dependence
of those properties with two bulk gaps and effective pair scattering process between two
sublevels.
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1. Introduction

The recent discovery of superconductivity of MgB2(Nagamatsu et. al., 2001)
has been much attracted great interest in the properties and for elucidation of
its mechanism from both experimental and theoretical view points. A crucial
role of the electron-phonon (e-p) interaction has been strongly suggested in
the superconductivity of MgB2(Liu et.al., 2001).Recent band calculations of
MgB2(Kortus et. al., 2001; An and Picket, 2001; Kato et. al., 2004) with
the McMillan formula (McMillan, 1968) of transition temperature have sup-
ported the e-p interaction mechanism for the superconductivity. Since the
discovery, the possibility of two-band superconductivity arising from other
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mechanisms has also been discussed in relation to two gap functions theoret-
ically.

Recently, two-band or multi-band superconductivity has been theoreti-
cally investigated in relation to superconductivity arising from coulomb re-
pulsive interactions (Konsin et. al., 1988; Yamaji and Shimoi, 1994;
Combescot and Leyronas, 1995; Konsin and Sorkin, 1998; Nagao et. al.,
2000; Kondo, 2001; konbo, 2002). The concept of the two-band model has
been discussed in 1958 (Suhl et. al., 1959; Moskalenko, 1959; konbo, 1963).
Recently, we have pointed out importance of many-band effects in supercon-
ductivity (Nagao et. al., 1999; Nagao and Yaremko et. al., 2002; Nagao and
Kruchinin et. al., 2002; Nagao et. al., 2003; Kruchinin and Nagao, 2005).
We have also investigated anomalous phases in two-band model by using
the Green function techniques (Nagao et.al., 2000; Nagao, Kawabe and Kru-
chinin, to appear.). The expressions of the transition temperature for several
phases have been derived, and the approach has been applied to superconduc-
tivity in several crystals by charge injection (Nagao et. al., 1997; Nagao et.
al., 1998; Nagao et. al., 2000).

Recent experiments (Black et. al., 1996; Ralph et. al., 1995) by Black
et al. have also generated much interest in the size dependence of the su-
perconductivity. Properties of ultrasmall superconducting grains have been
theoretically investigated by many groups (Jankó et. al., 1994; von Delft et.
al., 1996; Smith and Ambegaokar, 1996; Matveev and Larkin, 1997; Braun
and von Delft, 1998; Gladilin et. al., 2002; Braun and von Delft, 1999).
In such ultrasmall grains, the fundamental theoretical question for the size
dependency of the superconductivity was noticed by Anderson (Anderson,
1959). The standard BCS theory gives a good description of the phenomenon
of superconductivity in large sample. However, as the size of a superconduc-
tor becomes small, the BCS theory fails. In ultrasmall Al grains, the bulk gap
has been discussed in relation to physical properties in ultrasmall grain such
as the parity gap (Matveev and Larkin, 1997), condensation energy (Gladilin
et. al., 2002), electron correlation (von Delft, 1996) etc. with the dependence
of level spacing (Smith and Ambegaokar, 1996) of samples.

In this paper, we investigate properties of nanosize two-gap superconduc-
tivity by using a two-sublevel model in the framework of a mean field approx-
imation. A model corresponding to a nanosize two-gap superconductivity is
presented, and the partition function of the nanosize system is analytically
derived by using a path integral approach. A definition of the critical level
spacing of the two-gap superconductivity is also presented, and we discuss
condensation energy and parity gap of the two-gap superconductivity in re-
lation to the size dependence of those properties with two bulk gaps and
effective pair scattering process between two sublevels.
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2. Nanosize two-gap superconductivity

In nanosize grain of a superconductor, the quantum level spacing approaches
the superconducting gap. In the case of two-gap superconductor, we can con-
sider a model with two sublevels corresponding to two independent bands. In
this section, we present a model for nanosize two-gap superconductivity and
an expression of the partition function of the system.

2.1. HAMILTONIAN FOR NANOSIZE GRAINS

We consider a pairing Hamiltonian with two sublevels corresponding to two
bands 1 and 2 written as

H = H0 + Hint , (1)

where
H0 =

∑
j,σ

[
ε1 j − μ

]
a†jσa jσ +

∑
k,σ

[
ε2k − μ] b†kσbkσ , (2)

Hint = −g1

∑
j, j′∈I

a†j↑a
†
j↓a j′↓a j′↑ − g2

∑
k,k′∈J

b†k↑b
†
k↓bk′↓bk′↑

+ g12

∑
j∈I,k∈J

a†j↑a
†
j↓bk↓bk↑ + g12

∑
j∈I,k∈J

b†k↑b
†
k↓a j↓a j↑ . (3)

a†jσ(a jσ) and b†jσ(b j,σ) are the creation (annihilation) operators in sublevels
1 and 2 with spin σ and energies ε1 j and ε2 j, respectively. The operators
for each sublevel satisfy the anticommutation relations, and the operators be-
tween sublevels are independent. μ is the chemical potential. The second term
in Eq.(1) is the interaction Hamiltonian. g1 and g2 are the effective interaction
constant for sublevels 1 and 2. g12 is an effective interaction constant, which
corresponds to the pair scattering process between two bands. The sums with
respect to j and k in Eq.(3) are over the set I of N1I states corresponding to a
half-filled band 1 with fixed width 2ω1D and the set J of N2J states for band
2, respectively.

In this study, we assume that the Deby energies for the two sublevel sys-
tems are the same ω1D = ω2D = ωD. With this assumption, the ratio of N1I

and N2J can be related to the (constant) densities of state (DOS) ρ1 and ρ2 for
two bands as follows: N1I/N2J = ρ1/ρ2. We write the interaction constants
g1 and g2 as d1λ1 and d2λ2, respectively. d1 = 2ωD/N1I and d2 = 2ωD/N2J

are the energy level spacings, and λ1 and λ2 are dimensionless parameters.
In(3) we have introduced a pairing interaction g12 =

√
d1d2λ12. between the

two sublevel systems. In summary, we have a relation of ρ1/ρ2 = N1I/N2J =

d2/d1.
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2.2. PATH INTEGRAL APPROACH

It is convenient to introduce a path integral approach for treatment of the
fluctuations of the order parameters. This approach gives an exact expres-
sion for the grand partition function of a superconductor. Z(μ, T ) = Tr exp[−(H − μN)/T

]
, where T is the temperature, and N is the number operator

in the grain. The idea of the path integral approach is to replace the formula-
tion for system of the problem in terms of electronic operators by equivalent
formulation in terms of the superconducting order parameter.

By the path integral approach, we obtain an expression of the grand par-
tition function for the Hamiltonian of Eq. (1).

Z(μ, T ) =
∫

DΔ1DΔ∗1DΔ2DΔ∗2e−S [Δ1,Δ2] , (4)

where the action S [Δ1,Δ2] is defined as

S [Δ1,Δ2] = −
∑

j

[
Tr ln G−1

1 j −
ξ1 j

T

]
−
∑

k

[
Tr ln G−1

2k −
ξ2k

T

]

+

∫ 1/T

0
dτ

1

g1g2 − g2
12

[
g2|Δ1(τ)|2 + g1|Δ2(τ)|2

+g12
(
Δ1(τ)Δ2(τ)∗ + Δ1(τ)∗Δ2(τ)

)]
. (5)

Δ1 and Δ2 are bulk gaps for sublevels 1 and 2, respectively. Here, ξ1 j = ε1 j−μ
and ξ2k = ε2k − μ, and the inverse Green functions

G−1
a j (τ, τ′) =

[
− d

dτ
− ξa jσ

z − Δa(τ)σ+ − Δ∗a(τ)σ−
]
δ(τ − τ′) , (6)

where a = 1, 2 for band label, σ± = σx±iσy, and σx,y,z are the Pauli matrices.
G−1

1 and G−1
2 satisfy antiperiodic boundary conditions.

In the case of stronger interaction, Δ1 	 d1 and Δ2 	 d2, we consider
a mean field approximation for the order parameters in the path integral ap-
proach. Substituting a time-independent order parameters into the action of
Eq. (5), we have

Ω(μ) =
∑

j

(
ξ1 j − ε1 j

)
+
∑

k

(ξ2k − ε2k)

+
1

g1g2 − g2
12

[
g2Δ

2
1 + g1Δ

2
2 + g12

(
Δ∗1Δ2 + Δ1Δ

∗
2

)]
, (7)
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where ε1 j = (ξ21 j + Δ
2
1)1/2, and ε2k = (ξ22k + Δ

2
2)1/2. In Eq.(7), the values of Δ1

and Δ2 must be chosen in a way which minimizes Ω. From the minimization
of Ω, we obtain a coupled gap equation at zero temperature for the two-gap
system: (

Δ1

Δ2

)
=

⎛⎜⎜⎜⎜⎜⎝ g1
∑

j
1

2ε1 j
−g12

∑
k

1
2ε2k

−g12
∑

j
1

2ε1 j
g2
∑

k
1

2ε2k

⎞⎟⎟⎟⎟⎟⎠
(
Δ1

Δ2

)
. (8)

From the coupled gap equation of Eq.(8), we formally obtain an expression
of bulk gap for two-gap superconductivity at zero temperature:

|Δa| = ω sinh−1
(

1
ηa

)
, (a = 1, 2) , (9)

where

1
η1
=
λ2 + α±

[
η1, η2

]
λ12

λ1λ2 − λ2
12

,
1
η2
=
λ1 + α

−1±
[
η1, η2

]
λ12

λ1λ2 − λ2
12

, (10)

and α±
[
η1, η2

]
= ± sinh

(
1
η1

)
/ sinh

(
1
η2

)
In two-band superconductivity, we

can consider two cases for phase of the gaps: sgn(Δ1) = sgn(Δ2), and sgn(Δ1) =
−sgn(Δ2). For the same phase, α+ is used in Eqs.(10), and we use α− for
the opposite phase. Note that Δ1 = −Δ2 in the limit of strongly positive
intersublevel coupling λ12, that is, opposite phase. On the other hand, we find
the same phase for negative λ12. The transition temperature is defined from
the absolute value of the gap functions. In λ12 = 0, we find the same results
of two bulk gaps derived from conventional BCS theory for two independent
sublevels.

3. Discussion

In this section, we discuss properties such as condensation energy, critical
level spacing, and parity gap of nanosize two-gap superconductivity by using
the partition function derived in previous section.

3.1. CONDENSATION ENERGY

In nanosize superconductivity, the condensation energy can be defined as
EC

N,b(λ) = EG
N,b(0)−EG

N,b(λ)−nλd, where EG
N,b is the ground state energy of N-

electron system in the interaction band. b is the number of electron on single
occupied levels, and λ and n are the dimensionless coupling parameter and the
number of pair occupied level, respectively. In the case of nanosize two-band
system, the condensation energy can be written as EC

N1,b1;N2,b2
(λ1, λ2, λ12) =



122

EG
N1,b1;N2,b2

(0, 0, 0) − EG
N1,b1;N2,b2

(λ1, λ2, λ12) − n1λ1d1 − n2λ2d2, where

EG
N1,b1;N2,b2

(λ1, λ2, λ12) means the ground state energy of (N1 + N2)-electron
system. From Eq. (7), the condensation energy of two-sublevel system can be
expressed by the condensation energy of independent single level systems:

EC
N1,b1;N2,b2

(λ1, λ2, λ12) = EC
N1,b1

(λ1) + EC
N2,b2

(λ2)

− λ2
12

λ1λ2 − λ2
12

⎛⎜⎜⎜⎜⎜⎜⎝ Δ
2
1

d1λ1
+
Δ2

2

d2λ2
+

2
(
Δ∗1Δ2 + Δ1Δ

∗
2

)
√

d1d2λ12

⎞⎟⎟⎟⎟⎟⎟⎠ ,
(11)

where EC
N1,b1

(λ1) and EC
N2,b2

(λ2) correspond to the condensation energy for
single band case. In the same phases of Δ1 and Δ2, the condensation energy of

λ12. On the other hand, in the opposite phases, the condensation energy be-
comes larger, because Δ∗1Δ2+Δ1Δ

∗
2 < 0. We can expect that the condensation

energy of two-gap superconductivity becomes more stable than that of two
independent systems due to the intersublevel coupling λ12 and the opposite
phases.

3.2. CRITICAL LEVEL SPACING

To discuss the critical level spacing for two-gap system, which means both
gap functions vanish at a level spacing, Δ1 = Δ2 = 0, we start from the
coupled gap equation of Eq. (8). For the case of the critical level spacing of
two-gap system, we have

1 = λ1

∑
j

1

2|ξ̃1 j|
+ λ2

∑
k

1

2|ξ̃2k|
− (λ1λ2 − λ2

12)
∑

j

1

2|ξ̃1 j|
∑

k

1

2|ξ̃2k|
, (12)

where ξ̃i = ξi/di for sublevel i = 1, 2. For the odd or even electron num-
ber parity in the grain, Eq. (12) can be approximately solved by using the
digamma function: For odd case, the critical level spacing becomes

do
1c = ωDeγ exp

[
−1
λ

]
, do

2c =
d2

d1
do

1c , (13)

and for even case,

de
1c = 4ωDeγ exp

[
−1
λ

]
, de

2c =
d2

d1
de

1c . (14)

Here, we use

1
λ
=

1
2x

[
λ1 + λ2 − ax +

√
(λ1 − λ2 − ax)2 + 4λ2

12

]
(15)
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with

x = λ1λ2 − λ2
12 , a = log

d1

d2
. (16)

From these expressions, we find some relations:

de
1c = 4do

1c , de
2c = 4do

2c . (17)

and

do
1/2c ≈

eγ

2
exp

[
1
η1/2
− 1
λ

]
Δ̃1/2 . (18)

In the case of |λ1 − λ2| 	 λ12, Eq. (18) can be approximately rewritten as

do
1/2c ≈

eγ

2
exp

⎡⎢⎢⎢⎢⎣λ2 − λ1 + 2αλ12

λ1λ2 − λ2
12

⎤⎥⎥⎥⎥⎦ Δ̃1/2 . (19)

On the other hand, in the limit of |λ1 − λ2| � λ12, we have

do
1/2c ≈

eγ

2
exp

⎡⎢⎢⎢⎢⎣ (1 + α) λ12

λ1λ2 − λ2
12

⎤⎥⎥⎥⎥⎦ Δ̃1/2 . (20)

For case of λ12 = 0, Eq. (18) can be rewritten as do
1/2c ≈ exp[γ]/2 exp[1/λ1 −

1/λ2]Δ̃1/2. Therefore, when the coupling constants λ1 and λ2 become same
value, we have a similar relation to that for single level system; do

1/2c ≈
0.89Δ̃1/2. These results suggest the critical level spacing strongly depend
upon λ12 and the difference between the effective interaction constants for
sublevels. The relation in Eq. (17) is the same relation in the conventional
nanosize BCS theory.

3.3. PARITY GAP

In this subsection, we consider the parity gap in the case of two-gap super-
conductivity in ultrasmall grains. The parity gap in a single band system is
the difference between the ground state energy of a grain containing 2n + 1
electrons (odd parity) and the average ground state energy of grains con-
taining 2n and 2n + 2 electrons (even parity). It is a measure for the cost in
energy of having one unpaired electron. In the case of two sublevel spacings,
the chemical potential lies halfway between the highest occupied and the
lowest unoccupied levels of smaller level spacing in the half-filled case as
shown in Fig. 1(a). We assume that d1 < d2 and that the numbers of occu-
pied levels corresponding to each sublevel are n1 and n2, respectively. Then,
the total number of electron becomes N = 2n1 + 2n2. When we consider
N = 2n1 + 2n2 + 1, the chemical potential lies on the level ε1n1+1 as shown in



124

d
1

d
2

μ 
n

1

n
1
-1

n
1
+1

n
2
+1

n
2

n
2
-1

μ 
n

1

n
1
-1

n
1
+1

n
2
+1

n
2

n
2
-1

n
1

n
1
-1

n
1
+1

(a) (b) (c)

μ 

n
1

n
1
-1

n
1
+1

n
2
+1

n
2

n
2
-1

μ 

n
1

n
1
-1

n
1
+1

n
2
+1

n
2

n
2
-1

n
1
+2

(d) (e)

n
1
+2

Figure 1. Positioning of
the chemical potential relative
the electronic energy levels
in a two-gap superconducting
grain. Solid and dotted lines
mean two sublevels. (a) Half-
filled system with 2n1 + 2n2

electrons. (b) 2n1 + 1 + 2n2-
electron system. (c) 2(n1 +

1) + 2n2-electron system. (d)
2(n1 + 1) + 2n2 + 1-electron
system. (e) 2(n1 + 1) + 2(n2 +

1)-electron system.

Fig. 1(b). Figure 1(c) shows the position of the chemical potential in the case
of N = 2n1 + 2n2 + 2. The parity gap of nanosize two-gap superconductivity
is written as

Δ1
p = EG

2n1+1+2n2,1
− 1

2

(
EG

2n1+2n2,0
+ EG

2(n1+1)+2n2,0

)
. (21)

From Eq. (7) and the ground state energy as EG
N,b = ΩμN + μN N, we obtain

Δ1
p = Δ1 − d1

4

(
ρ1

ρ2
− 1

)
. (22)

From Figs. 1(c), (d), and (e), we can define another parity gap:

Δ2
p = EG

2(n1+1)+2n2+1,1 −
1
2

(
EG

2(n1+1)+2n2,0
+ EG

2(n1+1)+2(n2+1),0

)
. (23)

From the latter definition of Eq. (23), we have

Δ2
p = Δ2 − d2

4

(
3ρ2

ρ1
− 1

)
. (24)

The present results suggest two kinds of the dependence of the parity gap on
the level spacing. The parity gap does not depend upon the effective inter-
action λ12. The structure around Fermi level plays an important role of the
contribution to the size dependence on the parity gap.
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3.4. CONCLUDING REMARKS

We have investigated properties of nanosize two-gap superconductivity by
using a two-sublevel model in the framework of a mean field approxima-
tion. From the discussion for the condensation energy in nanosize two-gap
superconductivity, the phases of the gaps is very important to stabilize the
superconductivity. In the same phases, the two-gap superconductivity insta-
bilizes by coupling constant λ12. On the other hand, in the opposite phases,
the superconductivity becomes stable. We can expect that the condensation
energy of two-gap superconductivity becomes more stable than that of two
independent systems due to the intersublevel coupling λ12 and the opposite
phases.

We have also discussed the critical level spacing for two-gap supercon-
ductivity in ultrasmall grain. These results suggest the critical level spacing
strongly depend upon λ12 and the difference between the effective interaction
constants for sublevels. These results suggest that the relation between the
critical level spacing and the bulk gaps is modified to compare with the result
obtained in the ultrasmall grain of Al superconductivity.

In the parity gap in two-gap superconductivity, the present results suggest
two kinds of the dependence of the parity gap on the level spacing and that
the structure around Fermi level plays an important role of the contribution
to the size dependence on the parity gap. The prity gap does not depend upon
the effective interaction λ12.

In the case of cluster system, we have to treat a more accurate approach
for investigating these physical properties beyond the mean field approxima-
tion presented in this study, and we have also to consider the contribution
of the surface of samples to the level structure around Fermi level. We will
present these problems elsewhere (Kawabe, Nagao and Kruchinin, to ap-
pear.). From the present results, we might expect the possibility of a new
multi-gap superconductivity arising in nanosize region with higher critical
transition temperature.

In summary, a model corresponding to a nanosize two-gap supercon-
ductivity has been presented, and an expression of the partition function of
the nanosize system has been analytically derived by using a path integral
approach. A definition of the critical level spacing of the two-gap supercon-
ductivity has been also presented, and we discuss condensation energy and
parity gap of the two-gap superconductivity in relation to the size dependence
of those properties with two bulk gaps and effective pair scattering process
between two sublevels.
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