
Chapter 7

Spin-Dependent Transport of Carbon

Nanotubes with Chromium Atoms

S.P. Kruchinin, S.P. Repetsky, and I.G. Vyshyvana

Abstract This paper presents a new method of describing electronic correlations in

disordered magnetic crystals based on the Hamiltonian of multi-electron system and

diagram method for Green’s functions finding. Electronic states of a system were

approximately described by self-consistent multi-band tight-binding model. The

Hamiltonian of a system is defined on the basis of Kohn–Sham orbitals. Potentials of

neutral atoms are defined by the meta-generalized gradient approximation (MGGA).

Electrons scattering on the oscillations of the crystal lattice are taken into account.

The proposed method includes long-range Coulomb interaction of electrons at

different sites of the lattice. Precise expressions for Green’s functions, thermody-

namic potential and conductivity tensor are derived using diagram method. Cluster

expansion is obtained for density of states, free energy, and electrical conductivity of

disordered systems. We show that contribution of the electron scattering processes to

cluster expansion is decreasing along with increasing number of sites in the cluster,

which depends on small parameter. The computation accuracy is determined by

renormalization precision of the vertex parts of the mass operators of electron-

electron and electron-phonon interactions. This accuracy also can be determined

by small parameter of cluster expansion for Green’s functions of electrons and

phonons. It was found the nature of spin-dependent electron transport in carbon

nanotubes with chromium atoms, which are adsorbed on the surface. We show

that the phenomenon of spin-dependent electron transport in a carbon nanotube

was the result of strong electron correlations, caused by the presence of chromium

atoms. The value of the spin polarization of electron transport is determined by the

difference of the partial densities of electron states with opposite spin projection

at the Fermi level. It is also determined by the difference between the relaxation

times arising from different occupation numbers of single-electron states of carbon
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68 S.P. Kruchinin et al.

and chromium atoms. The value of the electric current spin polarization increases

along with Cr atoms concentration and magnitude of the external magnetic field

increase.

7.1 Introduction

The progress of describing disordered systems is connected with the development

of electron theory. Substitution alloys are best described among disordered systems.

The traditional knowledge about physical properties of alloys is based on Born

approximation in the scattering theory. However, this approach obviously can not

be applied in the case of large scattering of potential difference of components

which are held for the description of alloys with simple transition and rare-earth

elements. The same difficulty is typical for the pseudopotential method [8]. Because

of the pseudopotentials non-local nature there is a problem of their transferability.

It is impossible to use nuclear potentials determined by the properties of some

systems to describe other systems. Significant success in the study of the electronic

structure and properties of the systems was achieved recently due to use of the ultra-

soft Vanderbilt’s pseudopotential [21, 37] and the method of projector-augmented

waves in density functional theory proposed by Blohl [2, 16]. This approach was

developed further thanks to generalized gradient approximation (GGA) usage in

density functional theory of multi-electron systems developed by Perdew in his

papers [23–25, 35, 36].The wave function of the valence states of electron (all-

electron orbital) is denoted in projector-augmented waves approach by using the

conversion through the pseudo-orbital. The pseudo-orbital waves expand to pseudo

partial ones in the augment area. Even so, the all-electron orbital in the same area

are expanded with the same coefficients via partial waves that are described by

Kohn–Sham equation. The expression for the Hamiltonian operator, which we have

in equation for pseudo wave function, is derived by minimizing the full energy

functional. Using this equation, and expanding pseudo orbital by plane waves, we

can derive the set of equations for expansion coefficients. From this system it is

possible to get the electron energetic spectrum, wave functions, and the value of the

full energy functional. The method for describing the electron structure of crystals

is shown in Ref. [35], using VASP program package. With the help of the cluster

methods of calculation and the GAUSSIAN program package, this approach could

be used for molecule electronic structure description.

It should be noted that recently in papers (e.g. Refs. [6, 7, 9–11, 14, 26, 35]), the

simple effective calculation method of electronic structure and properties for big

molecules have been proposed. This method is based on the tight-binding model

and functional density theory, which includes long-range coulomb interaction of

electrons on different sites of crystal lattice. The long-range coulomb interaction of

electrons on different sites is described in the local density approximation.

However, mentioned methods [6, 7, 9–11, 14, 23–26, 35, 36] are used only for an

ideal ordered crystals and molecules description. In disordered crystals, the effects
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7 Spin-Dependent Transport of Carbon Nanotubes 69

associated with localized electronic states and lattice vibrations are arise. They can

not be described in the model of ideal crystal. In this regard, other approaches are

also developed.

Essential achievements in description of the disordered systems properties are

connected with application of the tight-binding model in the multi-scattering theory,

including approximation of the coherent potential. Starting from Slater’s and

Koster’s work [29, 31] tight-binding model in description of the ideal crystals prop-

erties were frequently applied. Later it was generalized for the case of disordered

systems.

The method of describing magnetic alloys electronic structure, based on the

functional density theory, was proposed by Staunton et al. [32] and Razee et al.

[27]. The effective potential in Kohn–Sham equation [13, 15] consists of atomic

potential and Pauli’s addition, which is expressed through the magnetic field

induction. Atomic potential and the magnetic field induction are expressed through

variational derivatives of exchange-correlation energy by electronic density and

magnetization respectively. Calculations of the electronic structure of the magnetic

alloy are based on the mentioned effective potentials and usage of the self-consistent

Korringa–Kohn–Rostoker coherent potential approximation. It was more developed

in further papers [12, 33, 34]. The method of interatomic pair correlations parameter

calculation was proposed by Staunton et al. [32] due to the pair mixing potential,

which is expressed through the second derivative of the thermodynamic potential of

the alloy concentration [3]. This thermodynamic potential is calculated in the one

site coherent potential approximation. It should be noted that the methods developed

in papers [12, 29, 31–34] do not include long-range Coulomb interaction of electrons

at different lattice sites.

In our work a new method of describing electronic correlations in disordered

magnetic crystals based on the Hamiltonian of multi-electron system and the dia-

gram method for finding Green’s functions was developed. Electronic correlations

in crystals were described in self-consistent multi-band tight-binding model. The

wave functions of non-interacting atoms are calculated based upon the Kohn–

Sham equation. The effective one-electron potential of the many-atom structure is

approximated as a sum of spherical Kohn–Sham potential of neutral non-interacting

atoms. Potential of neutral atoms are defined by the meta-generalized gradient

approximation (MGGA) [24, 35]. Our model includes wave functions and atomic

potentials recalculation, taking into account the electronic density redistribution as

the result of atomic interaction. It is also includes long-range Coulomb interaction

of the electrons on different sites of the crystal lattice. Electron scattering processes

on the ionic core potentials of different sorts and on oscillations of crystal lattice

are considered. The two-time Green’s function calculations are based on the

temperature Green’s function [22, 28]. In this operation a known relation between

spectral representation for two-time and temperature Green’s function was used [1].

Calculation of two-time Green’s function of the disordered crystal are based on

diagram technique, analogous to diagram technique for homogeneous system [1].

The set of equations for two-time Green’s function, expressions for free energy and

electrical conductivity of disordered crystals are derived. Calculation accuracy of
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the energetic spectrum, free energy, and electrical conductivity are determined by

accuracy of the electron-electron and electron-phonon mass operators vertex parts

renormalization. Energetic spectrum, free energy, conductivity and spin-depended

transport of nanotubes doped with Cr atoms calculations are based on this method.

7.2 Hamiltonian of Electron’s and Phonon’s System

for Disordered Crystals

Hamiltonian of the disordered crystal consists of single-particle Hamiltonian of

electrons in the ionic cores field, the potential energy of the pair electron-electron

interaction, lattice oscillations Hamiltonian and Hamiltonian of electron-phonon

interaction.

Hamiltonian of the disordered crystal is represented on the basis of wave func-

tions for free neutral atoms. In the Wannier representation the system Hamiltonian

is, [28]

H D H0 C Hint; (7.1)

where zero-order Hamiltonian

H0 D H.0/
e C H

.0/
ph ; (7.2)

consists from single-particle Hamiltonian of electrons in the ionic cores field

H.0/
e D

X

n1i1
1
n2i2
2

h
.0/
n1i1
1;n2i2
2

aC
n1i1
1

an2i2
2 (7.3)

and atomic nucleus Hamiltonian

H
.0/
ph D

X

ni˛

P2ni˛

2Mi

C 1

2

X

n1i1˛1
n2i2˛2

˚
.0/
n1i1˛1;n2i2˛2

un1i1˛1un2i2˛2 : (7.4)

Here in Eq. (7.3), (7.4) different sort ion cores distribution on sites .ni/ of crystal

lattice is the same as for ideally ordered crystal.

Perturbation Hamiltonian in Eq.(7.1) is

Hint D ı˚ C Hei C Heph C Hee C Hphi C Hphph: (7.5)
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Perturbation Hamiltonian Hint consists of different sorts ion core interaction energy

ı˚ . Interaction energy ı˚ is measured from energy level for ideally ordered crystal.

Addition to single-particle Hamiltonian of electrons in the ionic cores field in

Eq. (7.3) (electron-ion interaction Hamiltonian) is defined as

Hei D
X

n1i1
1
n2i2
2

wn1i1
1;n2i2
2a
C
n1i1
1

an2i2
2 : (7.6)

Hamiltonian of electron’s interaction with oscillations of the crystal lattice (named

as electron-phonon interaction) is defined as

Heph D
X

n1i1
1
n2i2
2

v0
n1i1
1;n2i2
2

aC
n1i1
1

an2i2
2 : (7.7)

Electron-electron pair interaction Hamiltonian is

Hee D 1

2

X

n1i1
1
n2i2
2
n3i3
3
n4i4
4

v
.2/n1i1
1;n2i2
2
n3i3
3;n4i4
4

aC
n1i1
1

aC
n2i2
2

an3i3
3an4i4
4 : (7.8)

Atomic nucleus Hamiltonian component, caused by disordered distribution of atoms

(phonon-impurity interaction Hamiltonian) is defined as

Hphi D 1

2

X

n1i1˛1
n2i2˛2

�M�1
n1i1˛1;n2i2˛2

Pn1i1˛1Pn2i2˛2

C 1

2

X

n1i1˛1
n2i2˛2

�˚n1i1˛1;n2i2˛2un1i1˛1un2i2˛2 ; (7.9)

where

�M�1
n1i1˛1;n2i2˛2

D
�

1

Mn1i1

� 1

Mi1

�

ın1n2ıi1i2ı˛1˛2 ;

�˚n1i1˛1;n2i2˛2 D ˚n1i1˛1;n2i2˛2 � ˚
.0/
n1i1˛1;n2i2˛2

, Mn1i1 , Mi1 – mass of the atom in the

site .ni/ for disordered and ordered alloy accordingly.
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The anharmonic component of atomic nucleus Hamiltonian (phonon-phonon

interaction Hamiltonian) is

Hphph D 1

3Š

X

n1i1˛1
n2i2˛2
n3i3˛3

˚
.0/
n1i1˛1;n2i2˛2;n3i3˛3

un1i1˛1un2i2˛2un3i3˛3 : (7.10)

In Eq. (7.10) only anharmonic terms of third order are taken into account.

In the previously written expressions aC
ni
 , ani
 are creation and destruction

operators in the state, described by Wannier function �ni
 .�/ D h�jni
i, where

� D .r; �/. In these notations state’s index 
 includes as quantum number � D 1=2,

�1=2 which defines the value of spin projection on z axis and a set of other quantum

numbers which describes electron spatial movements. Here n is the number of

primitive cell, i – sublattice site number in primitive cell, r is electron’s radius-

vector, uni – atoms displacement operator in site .ni/; Pni˛ – operator of ˛-projection

of atom’s momentum on orthogonal axes.

The wave functions of an electron in free neutral atom sort �, which is located

at the site .ni/, are obtained from Kohn–Sham equation in density functional theory

[25, 26]:

�

� „2
2m

r2 C V�
ext .r/C V�i

H .r/C V�i
XC;� .r/

�

� �
iı� .r/ D "�iı� 

�
iı� .r/ ; (7.11)

where � is quantum number of spin projection on axis z; ı D .Q"lm/, l, m are quantum

numbers of angular momentum and Q" is quantum number that describes the value of

electron energy. To reduce the length of Eq. (7.11) .r � rni/ is denoted by .r/.

In expression (7.11) the value V�
ext .r/ is potential energy of an electron in the

atom’s core field of sort � at the site .n/,

V�i
H .r/ D

Z

dv0 e2

jr � r0j
n�i

�

r0
�

(7.12)

– the Hartree potential.

In Eq. (7.12) electron density is

n�i .r/ D n�i� .r/C n�i�� .r/ : (7.13)

The electron density with projection of spin � is given by expression

n�i� .r/ D
X

ı

Z�iı� 
� �iı� .r/  

�
iı� .r/ ; (7.14)
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where Z�
iı� – occupation number of electron state .iı�/, assuming that an atom of

sort � is in the site .ni/.

In MGGA obtained by Perdew [24, 35] and based on density functional theory,

the exchange-correlation potential VXC;� .r/ D VMGGA
XC;� .r/ can be represented as:

VMGGA
XC;� .r/  
� .r/ D VGGA

XC;� .r/ 
� .r/ � 1

2
r � f�XC;� .r/rg 
� .r/ ; (7.15)

where

VGGA
XC;� .r/ D

�

@eMGGA
XC

@n�
� r �

�

@eMGGA
XC

@rn�

��

; �XC;� .r/ D @eMGGA
XC

@��
;

eMGGA
XC .2n� /=2 is exchange-correlational energy density, �� D

P

ı jr ı� j2 =2 is

kinetic energy density.

Wave functions of the basis set �ni
� .r/, on which Hamiltonian of the system is

represented as in Eq. (7.1), are defined from Kohn–Sham Eq. (7.11) for atom of sort

�i and equals to �ni
� .r/ D R
�i

iQ"l�
.jr � rnij/ Yvlm.�; �/, where R

�i

iQ"l�
.jr � rnij/ – radial

part of wave function in Eq. (7.11), �i – sort of atom which located in site .ni/ of

ideal ordered crystal. Real spherical functions Yvlm.�; �/, are related with complex

spherical functions Ylm.�; �/ by equations

Yc
lm.�; �/ D 1p

2
ŒYlm.�; �/C Y�

lm.�; �/�;

Ys
lm.�; �/ D 1

i
p
2
ŒYlm.�; �/ � Y�

lm.�; �/�; m ¤ 0: (7.16)

The potential energy operator of electron in the field of different sort ionic cores can

be expressed

V .r/ D
X

ni

vni
�

r � r0
ni

�

; r0
ni D rni C us

ni C uni;

where r – electron’s radius vector, rni D rn C �i – radius-vector of atom’s

equilibrium position in site of crystal lattice (ni), us
ni – is vector of atom’s static

displacement from equilibrium position in site (ni).

Potentials of ionic core v�i .r � rni/ are found from Eqs. (7.11), (7.12), (7.13),

(7.14) and (7.15). While finding potentials v�i .r � rni/ summation in Eq. (7.14)

must be done by electronic states of ionic cores.

Values h
.0/
n1i1
1;n2i2
2

in Eq. (7.3) are the matrix elements of the kinetic and potential
P

ni v
�i .r � rni/ energy operators of electron in the field of ionic core, where �i –

sort of ion which located in site .ni/ of ideal ordered crystal. Matrix elements are

calculated by Slater–Koster method [11, 35].

sergeikruchinin@yahoo.com



74 S.P. Kruchinin et al.

Matrix element of electron-ion interaction Hamiltonian in Eq. (7.6) is

wn1i1
1;n2i2
2 D
X

ni

wni
n1i1
1;n2i2
2

; (7.17)

where

wni
n1i1
1;n2i2
2

D
X

�

c�niw
�ni
n1i1
1;n2i2
2

;

w�ni
n1i1
1;n2i2
2

D v�ni
n1i1
1;n2i2
2

C�v�ni
n1i1
1;n2i2
2

� v�ini
n1i1
1;n2i2
2

;

�i is sort of ion which located in site .ni/ of ideal ordered crystal. Here c�ni – random

numbers, taking value 1 or 0 depending on whether the atom of sort � is at site .ni/

or not.

Hamiltonian of electron-phonon interaction defined in Eq. (7.7) is expressed

through derivatives of potential energy of electron in ions core field by projections

of displacement vector uni of atom. In Eq. (7.7) the value of v0
n1i1
1;n2i2
2

is given

by v0
n1i1
1;n2i2
2

D
P

ni˛ v
0ni˛
n1i1
1;n2i2
2

uni˛ , where v0ni˛
n1i1
1;n2i2
2

D
P

� c�niv
0�ni˛
n1i1
1;n2i2
2

.

Value v0�ni˛
n1i1
1;n2i2
2

is matrix element of operator �eni˛
d

djr�rnij
v� .jr � rnij/ ; where

eni D r�rni

jr�rnij
.

Values �v�ni
n1i1
1;n2i2
2

in Eq. (7.17) describe electron scattering on static displace-

ment of atoms and defined by equation

�v�ni
n1i1
1;n2i2
2

D
X

˛

v0�ni˛
n1i1
1;n2i2
2

us
ni˛:

The matrix of force constant part which is caused by the direct coulomb

interaction of ionic cores has the form:

˚ni˛;n0i0˛0 D � ZniZn0i0e
2

4�"0 jrn C �i � rn0 � �i0 j5

�
h

3 .rn˛ C �i˛ � rn0˛ � �i0˛/ .rn˛0 C �i˛0 � rn0˛0 � �i0˛0/

�jrn C �i � rn0 � �i0 j2 ı˛˛0

i

; .ni/ ¤ .n0i0/; (7.18)

where Zni – valence of ion cores which located in the site .ni/.

Diagonal by number site .ni/ elements of the matrix of force constants is

determined from the condition:

X

n0i0

˚ni˛;n0i0˛0 D 0:
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Values ˚
.0/
n1i1˛1;n2i2˛2

, ˚
.0/
n1i1˛1;n2i2˛2;n3i3˛3

in Eq. (7.4), (7.10) are force constants.

Matrix ˚
.0/

ni˛;n0i0˛0 is derived from expression for matrix ˚ni˛;n0i0˛0 in which Zni D
Z�i , where Z�i is valence of ion which is located in the site .ni/ of ideal ordered

crystal.

Matrix elements v
.7.2/n1i1
1;n2i2
2
n3i3
3;n4i4
4

of Hamiltonian in Eq. (7.8) can be calculated

by integrating angular variables. Integrals from product of three spherical functions

(Gaunt integral) can be represented using the Clebsch–Gordan coefficients [31]. As

a result matrix elements v
.2/Q"1l1m1;Q"2l2m2
Q"3l3m3;Q"4l4m4

are obtained:

v
.2/Q"lm;Q"2l2m2
Q"1l1m1;Q"0l0m0 D e2

X

jl � l0j 6 l3 6 l C l0

jl2 � l1j 6 l3 6 l2 C l1

l C l0 C l3 D 2k; k1 2 N

l2 C l1 C l3 D 2k1; k1 2 N

1

2l3 C 1

�
�

.2l3 C 1/.2l0 C 1/.2l3 C 1/.2l1 C 1/

.2l C 1/.2l2 C 1/

�1=2

�c.l3l
0lI 0; 0/c.l3l0lI m0 � m;m0/c.l3l1l2I 0; 0/c.l3l1l2I m2 � m1;m1/

�
" 1

Z

0

dr1r
2
1RQ"l.r1/RQ"0l0.r1/

r1
Z

0

dr2r
2
2RQ"2l2.r2/RQ"1l1.r2/

r
l3
2

r
l3C1
1

C
1

Z

0

dr2r
2
2RQ"2l2.r2/RQ"1l1.r2/

r2
Z

0

dr1r
2
1RQ"l.r1/RQ"0l0.r1/

r
l3
1

r
l3C1
2

#

; (7.19)

where l, m are orbital and magnetic quantum numbers, respectively, c.l00l0lI m00;m0/ –

Clebsch–Gordan coefficients [31], RQ" l.r/ – radial part of wave function, Q" – main

quantum number.

Matrix elements on the basis of real wave functions [35] v
.2/n1i1
1;n2i2
2
n3i3
3;n4i4
4

for

each site when .n1; i1/ D .n2; i2/ D .n3; i3/ D .n4; i4/ are expressed by linear

combinations of matrix elements v
.2/Q"1l1m1;Q"2l2m2
Q"3l3m3;Q"4l4m4

. This procedure of matrix elements

calculation can be easily programmed.

Matrix elements on the basis of real wave functions v
.2/n1i1
1;n2i2
2
n3i3
3;n4i4
4

for different

sites .ni/ can be approximately represented in the form similar to formula (7.19), if

we describe radial part of the wave function by Gaussian function (namely Gaussian

orbital), as this is done in the method of molecular orbitals – linear combinations of

atomic orbitals [29]. In this approximation the multi-center integrals v
.2/n1i1
1;n2i2
2
n3i3
3;n4i4
4

have the form of one-center integrals, as the product of two Gaussian orbitals that

are localized at different centers can be reduced to the product of orbitals that are

localized at the joint center.
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7.3 Green’s Functions of Electrons and Phonons System

In order to calculate the energy spectrum of electrons and phonons, free energy

and electrical conductivity of disordered crystal we introduce two-time Green’s

function. We define two-time retarded GAB
r .t; t

0/ and accelerated GAB
a .t; t

0/ Green’s

functions as follows[41]:

GAB
r .t; t

0/ D � i

„�.t � t0/hŒ QA.t/; QB.t0/�i;

GAB
a .t; t

0/ D i

„�.t
0 � t/hŒ QA.t/; QB.t0/�i: (7.20)

Operator in the Heisenberg representation reads

QA.t/ D eiHt=„Ae�iHt=„;

where „ – Planck’s constant, H D H � �eNe, �e is chemical potential of electron

subsystem and Ne is the operator of electrons number:

Ne D
X

ni


aC
ni
ani
 :

In Eq. (7.20)

ŒA;B� D AB � �BA; (7.21)

where for Bose operators A, B � D 1 and for Fermi operators � D �1, �.t/ is

Heaviside’s step function.

Brackets h: : :i in Eq. (7.20) denote averaging

hAi D Sp.�A/; � D e.˝�H/=�; (7.22)

where ˝ is thermodynamic potential of the system, � D kbT , T – temperature.

Calculation of two-time retarded and accelerated Green’s functions defined in

Eq. (7.20) is based on the calculation of temperature Green’s functions. Known rela-

tion between the spectral representation for retarded, accelerated and temperature

Green’s functions is used.

The temperature Green’s function defined as

GAB.�; � 0/ D �hT� QA.�/ QB.� 0/i; (7.23)

where operator QA.�/ is derived from QA.t/ in Eq. (7.20) by replacing t D �i„� ,
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QA.�/ D eH�Ae�H� ;

T� QA.�/ QB.� 0/ D �.� � � 0/ QA.�/ QB.� 0/C ��.� 0 � �/ QB.� 0/ QA.�/;

here for Bose operators A, B � D 1 and for Fermi operators � D �1.

We introduce the operator

�.�/ D eH0�e�H� ; (7.24)

where H D H0 C Hint, H0 D H0 � �eNe.

Differentiating the expression �.�/ in Eq. (7.24) by � parameter and conse-

quently integrating by the condition�.0/ D 1, we obtain:

�.�/ D T� exp

2

4�
�

Z

0

Hint.�
0/d� 0

3

5 ; (7.25)

where Hint.�/ D eH0�Hint e�H0� .

Taking into account expression (7.24) we can write

QA.�/ D ��1.�/A.�/�.�/: (7.26)

Taking to account Eqs. (7.25), (7.26) for temperature Green’s function in Eq. (7.23)

we can obtain equation

GAB.�; � 0/ D �hT�A.�/B.� 0/�.1=�/i0
h�.1=�/i0

(7.27)

where

hAi0 D Sp.�0A/; �0 D e.˝0�H0/=� :

Expanding the exponent �.�/ in expression (7.25) in a series of powers Hint.�/,

substituting the result in Eq. (7.27) and using Wick’s theorem for calculating the

temperature Green’s functions of disordered crystals [28] it is possible to build

a diagram technique similar to a homogeneous system [1]. The denominator in

Eq. (7.27) reduces from the same factor in the numerator. So Green’s function can

be expressed in a series only connected diagrams. Using the relation between the

spectral representations of temperature and time Green’s functions [1], by analytic

continuation to real axis we obtain the following system of equations for retarded

Green functions (hereinafter index r will be omitted) [28]:

GaaC

."/ D GaaC

0 ."/C GaaC

0 ."/
�

w C˙eph."/C˙ee."/
�

GaaC

."/

�Guu."/ D Guu
0 ."/C Guu

0 ."/
�

�˚ C˙phe."/C˙phph."/
�

�Guu."/C GuP
0 ."/�M�1GPu."/;
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GPP."/ D GPP
0 ."/G

PP
0 ."/�M�1GPP."/C GPu

0 ."/

�
�

�˚ C˙phe."/C˙phph."/
�

GuP."/;

GuP."/ D GuP
0 ."/ C GuP

0 ."/�M�1GPP."/C Guu
0 ."/

�
�

�˚ C˙phe."/C˙phph."/
�

GuP."/;

GPu."/ D GPu
0 ."/C GPu

0 ."/
�

�˚ C˙phe."/C˙phph."/
�

�Guu."/C GPP
0 ."/�M�1GPu."/; (7.28)

where " D „!.

Here GaaC
."/, Guu."/, GPP."/, GuP."/, GPu."/ are spectral representation of

one-particle Green’s function of the electrons subsystem and Green’s functions

“shift-shift”, “impulse-impulse”, “shift-impulse” “impulse-shift” of phonons sub-

system; ˙eph."/, ˙phe."/, ˙ee."/, ˙phph."/ – actual energetic parts (mass opera-

tors) which describe the electron-phonon, phonon-electron, electron-electron and

phonon-phonon interactions.

The spectral decomposition for two-time (7.20) and temperature (7.23) Green’s

functions is defined as:

GAB
r;a.t/ D 1

2�

1
Z

�1

GAB
r;a.!/ e�i!td!; GAB

r;a.!/ D
1

Z

�1

GAB
r;a.t/ ei!tdt;

GAB.�/ D �
X

!n

GAB.!n/ e�i!n� ; GAB.!n/ D 1

2

1=�
Z

�1=�

GAB.�/ ei!n�d�;

!n D
�

2n� � for Bose particles;

.2n C 1/� � for Fermi particles;

n D 0; ˙1; ˙2; : : :

Green’s functions definitions Eq. (7.20), (7.23) leads to relation between the spectral

representations of temperature and time Green’s functions:

GAB.!n/ D
�

GAB
r .i!n=„/; !n > 0;

GAB
a .i!n=„/; !n < 0:

To obtain Eq. 7.28 we used the above expression.

Accordingly to the indices .ni
/ and .ni˛/ Green’s functions of the electrons and

phonons subsystems are matrices respectively.
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From the motion equations for Green’s functions of zero approximation can be

obtained [41]:

GaaC

0 ."/ D
h

" � H
.7.1/
0

i�1

; H
.7.1/
0 D









h
.0/

ni
;n0i0
 0









;

Guu
0 ."/ D

�

!2M.0/ � ˚ .0/
��1

; ˚ .0/ D








˚
.0/

ni˛;n0i0˛0









;

M.0/ D kMiınn0ıii0ı˛˛0k : (7.29)

Providing that

�

"2

„2
�M C�˚ C˙phe."/C˙phph."/

�

ni˛;n0i0˛0

˚
.0/

ni˛;n0i0˛0

� 1; (7.30)

solution of the system in Eq. 7.28 has the form:

GaaC

."/ D
h

ŒGaaC

0 ."/��1 �
�

w C˙eph."/C˙ee."/
�

i�1

;

Guu."/ D
�

ŒGuu
0 ."/�

�1 �
�

"2

„2�M C�˚ C˙phe."/C˙phph."/

���1

;

GPP."/ D "2

„2 .M
.0//2Guu."/; (7.31)

where �M D k.Mi � Mni/ınn0ıii0ı˛˛0k, " D „!.

For solution of system in Eq. 7.28 members proportional to the second and higher

power of small parameter (7.30) were neglected.

Using the mentioned above diagram technique, in Ref. [28], has been found

explicit expressions for the mass operator of Green’s functions that describe the

many-particle interactions in the system.

The mass operator of Green’s function of electrons for the electron-phonon

interaction ˙eph.�; �
0/ is described by the diagram in Fig. 7.1.

Solid lines in Fig. 7.1 correspond to the Green’s function of electrons

GaaC

ni
;n0i0
 0.�; �
0/ and dashed lines correspond to the Green’s function of phonons

Guu
ni˛;n0i0˛0.�; �

0/. Vertex part  
n2i2˛2

ni
;n1i1
1
.�2; �; �1/ is described by diagrams in Fig. 7.2.

Fig. 7.1 Diagram for

˙eph ni
;n0 i0
 0 .�; � 0/ D
˙eph Qn
;Qn0
 0 . Here Qn D .ni�/
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+ +=

ñ2 α2

ñ γ ñ γ

ñ γ

ñ2
α2

ñ2
α2

ñ1 γ2 ñ1 γ1

ñ1 γ1ñ4 γ4 ñ5 γ5

ñ6 γ6

ñ8 γ8ñ7 γ7

ñ3 γ3
***

Fig. 7.2 Diagrams for the vertex part  
n2 i2˛2

ni
;n1 i1
1
.�2; �; �1/ D  

Qn2˛2
Qn
;Qn1
1

. Here Qn D .ni�/

Fig. 7.3 Diagram for

˙phe ni˛;n0 i0˛0 .�; � 0/ D
˙phe Qn˛;Qn0˛0 . In Fig. 7.3

Qn D .ni�/

No shaded triangle in Fig. 7.2 corresponds to equation

 
n2i2˛2
0ni
;n1i1
1

.�2; �; �1/ D v
0n2i2˛2
ni
;n1i1
1

ı.� � �2/ ı.� � �1/:

In Fig. 7.1 and in Fig. 7.2 summation for internal points Qn
 is carried out. Sum-

mation of Qn
 provides summation of ni
 and integration over � . Expressions that

correspond instead each diagram attribute multiplier .�1/nCF, where n is diagram’s

order (namely number of vertices  0 in the diagram), and F is the number of lines

for the Green’s function of electrons GaaC
. This function goes out and goes into in

the same vertices.

For the mass operator that describes electron-phonon interaction, we obtained

equation

˙eph ni
;n0i0
 0."/ D � 1

4� i

1
Z

�1

d"0coth

�

"0

2�

�

v
0n1i1˛1
ni
;n3i3
3

�
�

Guu
n1i1˛1;n2i2˛2

."0/ � Guu �
n1i1˛1;n2i2˛2

."0/
�

GaaC

n3i3
3;n4i4
4

�." � "0/ 
n2i2˛2

n4i4
4;n0i0
 0

�

" � "0; "I "0
�

: (7.32)

For repeated indices summation is conducted.

Phonon-electron interaction is described by the diagram in Fig. 7.3.

Designation in Fig. 7.3 corresponds to designations in Figs. 7.1 and 7.2.
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Phonon-electron interaction is described by mass operator

˙pheni˛;n0i0˛0."/ D 1

2� i

1
Z

�1

d"0f ."0/v0ni˛
n2i2
2;n1i1
1

�
(

h

GaaC

n1i1
1;n3i3
3
."C "0/ � GaaC �

n1i1
1;n3i3
3
."C "0/

i

�GaaC �
n4i4
4;n2i2
2

."0/C GaaC

n1i1
1;n3i3
3
."C "0/

�
h

GaaC

n4i4
4;n2i2
2
."0/ � GaaC �

n4i4
4;n2i2
2
."0/

i

)

� n0i0˛0

n3i3
3;n4i4
4

�

"C "0; "I �"0
�

: (7.33)

Diagrams for the mass operator ˙ee.�; �
0/ that describes electron-electron

interaction, are shown in Fig. 7.4.

Vertex part  
n2i2
2;n1i1
1

ni
;n0i0
 0 .�2; �1�; �
0/ are shown on diagrams in Fig. 7.5.

Not shaded triangle in Fig. 7.5 corresponds to equation

 
n2i2
2;n1i1
1
0ni
;n0i0
 0 .�2; �1�; �

0/ D Qv.2/ni
;n2i2
2
n1i1
1;n0i0
 0 ı

�.� � �2/ı.� � �1/ı.� � � 0/;

Qv.2/ni
;n2i2
2
n1i1
1;n0i0
 0 D v

.2/ni
;n2i2
2
n1i1
1;n0i0
 0 � v

.2/ni
;n2i2
2
n0i0
 0;n1i1
1

:

ñ′

ñ′γ′

ñγ 

ñγ 

ñ2γ 2 ñ1γ 1
+ γ′

Fig. 7.4 Diagrams for ˙eeni
;n0 i0
 0 .�; � 0/ D ˙eeQn
;Qn0
 0 . Here Qn D .ni�/

+ ++=
ñ

′ γ′
ñ

′ γ′

ñ
′ γ′

ñ γñ γñ γ ñ γ

ñ1γ1 ñ1γ1 ñ1γ1

ñ1γ1

ñ2γ2ñ2γ2ñ2γ2 ñ2γ2

Fig. 7.5 Diagrams for vertex part  
n2 i2
2;n1 i1
1

ni
;n0 i0
 0 .�2; �1�; �
0/ D  

Qn2
2;Qn1
1
Qn
;Qn0
 0 . Here Qn D .ni�/
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The mass operator that describes electron-electron interaction is:

˙eeni
;n0i0
 0."/ D ˙
.1/

eeni
;n0i0
 0 C˙
.2/

eeni
;n0i0
 0."/;

˙
.1/

een;n0 D � 1

4� i

1
Z

�1

d"0f
�

"0
�

Qv.2/n;n2
n1;n0

h

GaaC

n1;n2
."0/ � GaaC �

n1;n2
."0/

i

;

˙
.2/

een;n0 ."/ D �
�

1

2� i

�2
1

Z

�1

d"1

1
Z

�1

d"2 Qv.2/n;n3n2;n1

�

f ."1/ f ."2/

�
h

GaaC �
n2;n5

." � "1 C "2/G
aaC

n1;n4
."1/ � GaaC

n2;n5
." � "1 C "2/G

aaC �
n1;n4

."1/
i

�
h

GaaC

n6;n3
."2/ � GaaC �

n6;n3
."2/

i

 
n5;n6

n4;n0 ."1; " � "1 C "2I "2; "/

Cf ."1/ f ."1 C "2 � "/
h

GaaC

n2;n5
."2/ � GaaC �

n2;n5
."2/

i

�
h

GaaC

n1;n4
."1/GaaC

n6;n3
."1 C "2 � "/ � GaaC �

n1;n4
."1/GaaC �

n6;n3
."1 C "2 � "/

i

� n5;n6
n4;n0 ."1; "2I "1 C "2 � "; "/

�

; (7.34)

Qv.7.2/n;n2
n1;n0 D v

.7.2/n;n2
n1;n0 � v

.7.2/n;n2
n0;n1

; .n � ni
/ .

In Ref. [28] expressions for the mass operator ˙phph."/ that describe phonon-

phonon interaction similarly were obtained.

The relations arising from the theory of functions of complex variable are used

upon receipt of expressions (7.32), (7.33) and (7.34).

�
X

!n

�.i!n/ D 1

4� i

I

C

dz coth
� z

2�

�

� .z/ .!n D 2n��/;

�
X

!n

�.i!n/ D � 1

2� i

I

C

dz f
� z

�

�

� .z/ .!n D .2n C 1/ ��/;

f
� z

�

�

D 1

exp
�

z
�

�

C 1
;

where �.z/ is analytic function of complex z in the region covered by a contour C.

Between spectral representations of the Green’s functions G� ."/ defined at

constant chemical potential �e by Eq. (7.20), and GN ."/, defined at a constant

number of electrons Ne a relation G� ."/ D GN ."C �/ exists.

Renormalization of diagrams vertex parts can be neglected.

 
�2n2i2˛2

n4i4
4;n0i0
 0

�

" � "0; "I "0
�

D v
0�2n2i2˛2
n4i4
4;n0i0
 0 ;

 
n5;n6

n4;n0 ."1; " � "1 C "2I "2; "/ D Qv.2/n4;n5
n6;n0 :
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In expressions (7.33) and (7.34) f ."/ is Fermi function. Fermi level "F � �e of

system is determined by the equation:

hZi D
1

Z

�1

f ."; "F/ge."/d"; (7.35)

where hZi – average number of electrons per atom, ge."/ – density of electron states.

ge ."/ D � 1

��N
ImSp

D

GaaC

."/
E

c
: (7.36)

In Eq. (7.36) brackets h: : :ic denote configurational averaging, N is a number of

primitive cells, � – number of atoms in the primitive cell. To further reduce of

recordings the index c near brackets h: : :ic will be omitted. In the formula (7.35)

hZi – average number of electrons per atom.

Equation (7.36) follows from the definition of operator number of electrons in

Eq. (7.20) and Green’s function GAB.�; � 0/ (7.23), A D aC
ni
 , B D ani
 .

It should be noted that the first term ˙
.1/

eeni
;n0i0
 0 in Eq. (7.34) for the mass

operator of electron-electron interaction describes the Coulomb and exchange

electron-electron interactions in the Hartree–Fock approximation. The second term

˙
.2/

eeni
;n0i0
 0."/ which is caused by output beyond the Hartree–Fock approximation,

describes the electronic correlation. In contradiction to Refs. [6, 7, 9–11, 14, 26]

long-range Coulomb interaction of electrons located at the different sites of the

crystal lattice is described taking into account an arbitrary number of energy

bands.

Expression in Eq. (7.31) differs from corresponding expressions for the Green’s

function of the single-particle Hamiltonian of disordered system only by form of

mass operators. Therefore to calculate the Green’s function given by Eq. (7.31) we

use well known methods of the disordered systems theory [28].

7.4 Localized Magnetic Moments

Obtained results give possibilities to investigate the influence of electronic corre-

lations on the electronic structure and properties of the system. To perform this,

the heterogeneous distribution of electron density is taken into account. We assume

that distribution of electron density corresponds to the minimum of free energy.

The mass operator of electron-electron interaction in Eq. (7.34) can be defined

through the occupation number Z
�m�i

ni
� of electron’s states .ni
�/. The value Z
�m�i

ni
�

is determined by Eq. (7.35), where density of electronic states ge."/ is replaced by

conditional partial density of states g
�m�i

ni
� ."/ for energy band 
 and spin projection � .
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The occupation number of electron states Z
�m�i

ni
� and conditional partial density of

states g
�m�i

ni
� ."/ are

Z
�m�i

ni
� D
1

Z

�1

f ."; "F/ g
�m�i

ni
� ."/d";

g
�m�i

ni
� ."/ D � 1
�

Im
D

GaaC

ni
�;ni
� ."/
E
ˇ

ˇ

ˇ

.ni/2�m�i

: (7.37)

In the last formula averaging is done along with condition that atom of sort � is

located at the site .ni/, and projection of localized magnetic moment equals to m�i.

The probability of such event is P
�m�i

ni and we can write
P

�;m�i
P
�m�i

ni D 1.

Thus, we consider the localized magnetic moments which are distributed not

homogeneously on the crystal lattice sites (static magnetization fluctuations).

We can also write equations

Z
�m�i

ni
 D Z
�m�i

ni
� C Z
�m�i

ni
;�� ; m�i
 D Z
�m�i

ni
� � Z
�m�i

ni
;�� : (7.38)

From Eq. (7.38) we obtain

Z
�m�i

ni
� D
Z
�m�i

ni
 C m�i


2
; Z

�m�i

ni
;�� D
Z
�m�i

ni
 � m�i


2
:

Number of electrons and magnetic moment projection for the atom of sort � at

the site .ni/ are, respectively:

Z
�m�i

ni D
X




Z
�m�i

ni
 ; m�i D
X




m�i
 :

In Eq. (7.31) by introducing the mass operator as the sum of one site operators

and selecting as a zero one site approximation of the effective medium Green’s

function cluster expansion for Green’s functions GaaC
."/, Guu."/ is performed.

Specified expansion is a generalization of the cluster expansion for the Green’s

function GaaC
."/ of single-particle Hamiltonian.

Green’s functions in Eq. (7.31) satisfy this equation:

G."/ D QG."/C QG."/T."/ QG."/;

where T is matrix of scattering and could be represented expansion in series, where

which terms describe scattering of the clusters with different numbers of nodes

T D
X

.n1i1/

tn1i1 C
X

.n1i1/¤.n2i2/

T.2/n1i1;n2i2 C : : :
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Here T.2/n1i1;n2i2 D
�

I � tn1i1 QGtn2i2 QG
��1

tn1i1 QGtn2i2
�

I C QGtn1i1
�

, where tn1i1 is

scattering operator on the same site is determined by equation tn1i1 D
�

I � .˙n1i1 � �n1i1/ QG
��1

.˙n1i1 � �n1i1/. This is �n1i1 potential of the effective

medium (coherent potentials).

By using Eqs. (7.36) and (7.37) and performing averaging over the distribution

of atoms of different sort and localized magnetic moments projection at the sites of

the crystal lattice and neglecting the contribution of processes of electron scattering

in clusters consisting of three or more atoms that are small by the small parameter

for the density of electronic states we obtain:

ge ."/ D 1

v

X

i;
;�;�;m�i

P
�m�i

0i g
�m�i

0 i
 � ."/ ;

g
�m�i

0 i
 � ."/ D � 1
�

Im
n

QG C QGt
�m�i

0i
QG C

X

.lj/ ¤ .0i/

�0;m�0 j

P
�0 m�0 j=�m�i

lj 0 i

� QG
h

t
�0m�0 j

lj C T.2/�m�i0i;�0m�0 jlj C T.2/�
0m�0 jlj;�m�i0i

i

QG
o0i
�;0i
�

;

T.2/�m�i0i;�0m�0 jlj D
h

I � t�m�i0i QGt�
0m�0 jlj QG

i�1

�t�m�i0i QGt�
0m�0 jlj

�

I C QGt�m�i0i
�

; (7.39)

where QG D QGaaC
."/.

Energy spectrum calculation is done by iterative procedure. The first step of

iterative procedure is described above.

On the next steps of iterative procedure values of occupation number of electron

basis states in Eq. (7.14) is calculated by expression:

Z�iı� D 1

2

�

Z�iıc� C Z�iıs�
�

; (7.40)

where Z�
iıc� ;Z

�
iıs� defined by expression (7.37) for Z

�m�i

ni
� , 
 D .ıc/; .ıs/ and ı D
.Q"lm/. Expression (7.40) obtained using Eq. (7.16).

Above mentioned procedure of energy spectrum calculation is self-consistent.

7.5 Free Energy

Thermodynamic potential of the system is

˝ D �� ln Sp.e�H=�/:
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Free energy F as a function of volume V , temperature T , number of electrons

Ne and parameters of interatomic correlations ."n1i1;n2i2 ; �/ to the thermodynamic

potential ˝ is expressed via expression F D ˝ C �ehNei. Free energy F in the

weak dependence of the mass operators on the energy of electrons and phonon

approximation can be represented in the form [17–19, 28]

F D hı˚i ��Sc C˝e C˝ph C �ehZi; (7.41)

where ˝e, ˝ph are given by

˝e D ��
1

Z

�1

ln
�

1C e.�e�"/=�
�

ge."/d";

˝ph D �
R 1

�1
ln

�

1 � e�"=�
�

gph."/d" – the thermodynamic potential of atomic

nucleus in field of ionic cores.

In Eq. (7.41) the values F, Sc, ˝e, ˝ph are calculated per one atom.

7.6 Electrical Conductivity

For electrical conductivity tensor calculation Kubo’s formula is used [20]

�˛ˇ .!/ D
1=�
Z

0

1
Z

0

ei!t�ıt
˝QJˇ .0/ QJ˛ .t C i„�/

˛

d�dt; (7.42)

where J˛ is the operator of the ˛ is projection of the current density.

From Eq. (7.42) it follows:

Re �˛ˇ .!/ D i

2!

h

G
J˛Jˇ
r .!/ � G

J˛Jˇ
a .!/

i

:

To calculate the spectral representations G
J˛Jˇ
r .!/ and G

J˛Jˇ
a .!/ of the retarded and

the advanced Green’s functions the expression for current-density operator is used

J˛ .t/ D e

Z

	C .�; t/ v˛	 .�; t/d�;

where 	C .�; t/ and 	 .�; t/ are field operators of electron’s creation and annihila-

tion respectively; �˛ is the operator of the ˛ – projection of the velocity; e is the

electron charge; by integrating over � we mean integrating over the crystal volume

and summing over the projection of spin � onto the z axis; and the crystal’s volume

is assumed to be equal to unity.

sergeikruchinin@yahoo.com



7 Spin-Dependent Transport of Carbon Nanotubes 87

+_=

4 3 4 3 4 3 4

7

6

8

5

2222 1111

3

Fig. 7.6 Diagrams for the two-particle Green’s function

In this case the temperature Green’s function is
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where V1 – volume of primitive cell, the two-particle Green’s function is
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The two-particle Green’s function is described by the diagram in Fig. 7.6. Numbers

of Fig. 7.6 correspond to point numbers, e.g., 1 corresponds to .n1i1
1�1/.

Using the diagram technique for two-particle temperature Green’s function and

neglecting the contributions of scattering processes on clusters of three or more sites

for the static conductivity tensor we can get
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In Eq. (7.43) component of two-particle Green’s function�GII
˛ˇ ."1; "2/ is caused by

the interaction and has the form:
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Operator ˛-projection of the electron velocity in Eq. (7.43) is:
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To simplify the formula (7.44) we use approximate expression
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˛ˇ ."1I "2/ is derived from the Eq. (7.43) by replacing the
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."/ with QGaaC
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7.7 Spin-Dependent Transport of Carbon Nanotubes

with Chromium Atoms

In this section the results of calculation of the energy spectrum of electrons

and phonons and conductivity of carbon nanotubes doped with chromium are

represented. Renormalization of vertex parts diagrams for the mass operators in

Eqs. (7.32), (7.33) and (7.34) and contribution of the static displacements of atoms

in the calculations are neglected. The contribution of matrix elements on the

basis of real wave functions v
.2/n1i1
1;n2i2
2
n3i3
3;n4i4
4

in Eq. (7.34) for different sites .ni/ is

neglected. As the basis 2s; 2p-states wave functions of the neutral carbon atoms

and 3d, 4s-states wave functions of the neutral chromium atoms were chosen.

The initial ion core’s valence of C and Cr atoms Z�i are 4 and 6 respectively.

To simplify calculations in the above-mentioned self-consistent iterative procedure

was performed only first step. In expression (7.14) Z�
iı� D 1 for occupied

electronic states. The off-diagonal matrix elements (ni) by site index of Hamiltonian

in Eq. (7.1) were calculated by taking into account the first three coordination

spheres. For Green function calculation 103 points for Brillouin zone are used. For

mass operator calculation in Eqs. (7.32), (7.33) and (7.34) numerical integration is

applied. Calculations were performed for the temperature T D 300K.

We performed geometry optimization of the crystal structure of carbon nanotube

with (3, 0) chirality doped by Cr atoms. Geometric optimization of the crystal

structure was achieved by minimization the free energy F, defined in Eq. (7.41).

Carbon nanotube doped with Cr has a one-dimensional crystal structure. Primitive

cell contains 18 non-equivalent atom positions. Carbon atoms are located in 12
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Fig. 7.7 The crystal structure

of carbon nanotube with (3,0)

chirality doped by Cr atoms.

The top view. Black – C

atoms, white – Cr atoms

Fig. 7.8 Dependence of free energy F for carbon nanotubes with 5 atoms of Cr per primitive cell

on parameter of pair correlations in the arrangement of Cr impurities on lattice sites "BB

positions on the surface of the inner cylinder. The distance between the carbon

atoms is 0.142 nm. Cr atoms are located in 6 positions on the outer surface of the

cylinder opposite the center of a hexagon, the vertices of which are carbon atoms.

The distance between carbon atoms and Cr is 0.22 nm. The crystal structure of

carbon nanotube with (3,0) chirality with Cr impurity is showed at Fig. 7.7.

Through the study of free energy minimum found that Cr atoms are randomly

located on the surface of nanotubes. In Fig. 7.8 points shows the dependence of the

free energy F in Eq. (7.41) on the parameter of pair correlations in the arrangement

of Cr impurities on lattice sites "BB D "BB
lj0i in Eq. (7.33) for the first coordination

sphere. Atom of Cr is denoted as atom of sort B. The dependence F."BB/ is shown

in the region of free energy minimum.

As shown in Fig. 7.8, the free energy F minimum corresponds to "BB D 0. This

is a result of Cr atoms are randomly located on the surface of carbon nanotube.
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Fig. 7.9 Densities of electron states of carbon nanotube with an admixture of Cr

The relative position of carbon atoms and Cr is similar to the location of atoms

of transition metals on the surface of carbon nanotubes of large diameter, which are

described in Ref. [39, 40] by ultrasoft pseudopotential method.

The value of localized magnetic moment projection of the atom Cr and induced

localized magnetic moment of an atom C in the direction of the magnetic field

increases with the size of the field. For carbon nanotubes of 5 Cr atoms in

primitive cell value of projection of magnetic moment of the atom Cr varies

within mCr D .1:02I 2; 24/�B, and the magnetic moment of the atom C – within

mC D .0; 0036I 0; 02/�B with increasing values of the magnetic field from zero to

H D 200A/m. The magnetic field is oriented along the axis of the carbon nanotube.

Parameter of pair correlations in the orientation of localized magnetic moments on

lattice sites for the first coordination sphere in the absence of magnetic field equals

to "m D 0:235. The value "m for the second and third coordination spheres are close

to zero. A positive value of "m for the first coordination sphere indicates that the

localized magnetic moment given carbon atom is oriented in the same direction as

the magnetic moment of the nearest Cr atom.

Figure 7.9 shows a partial ge� ."/ D 1
v

P

i;
;� P�0ig
�
0i
� ."/ and full ge ."/ D

P

� ge� ."/ densities of electron states of carbon nanotube with an admixture of

Cr in the absence of external magnetic field calculated by Eq. (7.32). In the absence

of a magnetic field g1=2 ."/ D g�1=2 ."/. Vertical line shows the Fermi level "F.

Figure 7.10 shows partial ge� ."/ and full ge ."/ densities of electron states of

carbon nanotube with 5 atoms of Cr per primitive cell in external magnetic field

H D 100A/m.

In Fig. 7.10 the part of energy spectrum that is close to the Fermi level is showed.

As shown in Fig. 7.10, line of partial ge� ."/ density of electron states for spin

� D 1=2 is shifted relative to line for spin � D �1=2. The results presented

in Fig. 7.10, are qualitatively consistent with results obtained by another method
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Fig. 7.10 Densities of electron states of carbon nanotube with 5 atoms of Cr per primitive cell in

external magnetic field H D 100A/m

Fig. 7.11 The dependence of spin polarized electric current ��=� of carbon nanotube on the

magnitude of the external magnetic field H

in Ref. [39]. In contradiction to our research in Ref. [39] carbon nanotubes with

(9;0) chirality doped by Co atoms located inside of the nanotube were described.

Quantitative differences in results derived in our research and results of Ref. [39]

are determined by this.

In Fig. 7.11 the dependence of the spin polarization electric current ��=� D
.�1=2���1=2/ of carbon nanotube with chirality (3.0) and 5 atoms of Cr per primitive

cell on the magnitude of the external magnetic field calculated by Eq. (7.43) for

temperature 300 K is shown.
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7.8 Conclusion

The previously mentioned methods [4, 6, 7, 9–11, 14, 23–26, 30, 35, 36, 38] are

used only for the description of ideal ordered crystals and molecules. However, a

new method of describing electronic correlations in disordered magnetic crystals

based on the Hamiltonian of multi-electron system and diagram method for finding

Green’s functions is developed.

The nature of spin-dependent electron transport of carbon nanotubes with

chromium atoms, which were adsorbed on the surface was found. The phenomenon

of spin-dependent electron transport in a carbon nanotube is the result of strong

electron correlations caused by the presence of chromium atoms. The value of the

spin polarization of electron transport in carbon nanotubes with chromium atoms,

which were adsorbed on the surface, is determined by the difference of the partial

densities of electron’s states (see Fig. 7.10) with opposite spin projection at the

Fermi level. This value is also determined by the difference between the relaxation

times which arise from different occupation numbers of single-electron states

Z�n1i1
1�1
of atoms of carbon and chromium [see Eq. (54)]. The spin polarization

of the electric current value increases with Cr atoms concentration and magnitude

of the external magnetic field increase. The electronic structure and properties of

carbon nanotubes with transition metal chains, adsorbed on the surface, based on

the density functional method [23–25, 35, 36] using ultra-soft pseudopotential was

calculated [5]. Our results are qualitatively consistent with the results of Ref. [5]. In

this paper electron density functional method showed that the chains of transition

metals adsorbed on the surface of carbon nanotubes. They open a gap in the

electrons states with a certain spin value. Contradictory to Ref.[5] it is shown that

atoms of Cr are randomly placed on the carbon nanotube surface.
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