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This paper presents a new method of describing electronic spectrum, thermodynamic
potential, and electrical conductivity of disordered crystals based on the Hamiltonian

of multi-electron system and diagram method for Green’s functions finding. Electronic

states of a system were described by multi-band tight-binding model. The Hamiltonian
of a system is defined on the basis of the wave functions of electron in the atom nucleus

field. Electrons scattering on the oscillations of the crystal lattice are taken into account.

The proposed method includes long-range Coulomb interaction of electrons at different
sites of the lattice. Precise expressions for Green’s functions, thermodynamic potential
and conductivity tensor are derived using diagram method. Cluster expansion is obtained

for density of states, free energy, and electrical conductivity of disordered systems. We
show that contribution of the electron scattering processes to clusters is decreasing along

with increasing number of sites in the cluster, which depends on small parameter. The

computation accuracy is determined by renormalization precision of the vertex parts of
the mass operators of electron-electron and electron-phonon interactions. This accuracy
also can be determined by small parameter of cluster expansion for Green’s functions of

electrons and phonons.
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1. Introduction

Progress in describing of disordered systems is strongly connected with develop-

ment of electron theory. Substitution alloys are best described among disordered

systems. Traditional knowledge about physical properties of alloys is based on Born

approximation of the scattering theory. But this approach obviously cannot be ap-

plied in case of a large scattering potential difference of components that holds

for the description of alloys with simple, transition, and rare-earth elements. The

same difficulty relates the pseudopotential method.1 Because of non-local nature

of pseudopotential, the problem of pseudopotential transferability exists. It is im-

possible to use nuclear potentials determined by the properties of some systems to

describe other systems. Because of using theory of Vanderbilt ultra-soft potentials2,3

and method of projector-augmented waves proposed by Blochl,3,4 in investigations

of electronic structure and properties of the system have been achieved fundamen-

tal progress. Significant success in the study of electronic structure and properties

of the systems achieved recently because of the use of ultra-soft pseudopotential

Vanderbilt2,3 and the method of projector-augmented waves in density functional

theory proposed by Blochl.3,4 This approach was developed further because of use

of the generalized gradient approximation in density functional theory of multi-

electron systems, developed at Perdew works.5–9 In projector-augmented waves

approach, the wave function of valence states of electron (all-electron orbital) is

expressed by using the conversion through the pseudo orbital. Pseudo orbital ex-

pands to pseudo partial waves in the augment area. Even so all-electron orbital in

the same area is expanded with the same coefficients via partial waves, described by

Kohn–Sham equation. Expression for pseudo Hamiltonian which we have in equa-

tion for pseudo wave function is derived by minimizing the full energy functional.

Using this equation and expanding pseudo orbital by plane waves, we can derive set

of equations for expansion coefficients. From this system it is possible to get elec-

tron energetic spectrum, wave functions, and value of the full energy functional. It

is shown in Ref. 9 the way to use this method for describing the electron structure

of crystals, using VASP program package. Using cluster methods of calculation and

GAUSSIAN program package, this approach could be used for description molecule

electronic structure.

It should be noted, recently in Refs. 9–16 simple effective calculation method

of electronic structure and properties for big molecules had been proposed. This

method is based upon tight-binding model and functional density theory, which

includes long-range Coulomb interaction of electrons on different sites of crystal

lattice. Long-range Coulomb interaction of electrons on different sites is described

in the local density approximation.

But mentioned methods5–16 are used only for description of ideal ordered crys-

tals and molecules.

In disordered crystals, effects associated with localized electronic states and

lattice vibrations occur. They cannot be described in a model of an ideal crystal.

In this regard, other approaches are developing too.
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Essential achievement in description of properties of disordered systems is con-

nected with application of tight binding model in the multi-electron scattering,

including approximation of coherent potential. Starting from Slater’s and Koster’s

work,17,18 there was wide use of the tight binding model in electronic structure

calculations and in description of ideal crystals properties. Later it was generalized

for the case of disordered systems.

In Refs. 19 and 20, method of describing magnetic alloys, electronic struc-

ture based on functional density theory is proposed. The effective potential in

Kohn–Sham equation21,22 consists of atomic potential and Pauli addition, which

is expressed through magnetic field induction. Atomic potential and induction of

magnetic field are expressed through variational derivative of exchange-correlation

energy by electronic density and magnetization, respectively. Calculations of elec-

tronic structure of magnetic alloy are based on already mentioned effective mass

potentials using the self-consistent Korringa–Kohn–Rostoker coherent potential ap-

proximation, but more developed in Refs. 23–25. In Ref. 19 proposed a method of

calculating the parameters of interatomic pair correlations due to the pair mixing

potential, which is expressed through the second derivative of the thermodynamic

potential of the alloy concentration.26 This thermodynamic potential is calculated

in one site coherent potential approximation. It should be noted that the methods

developed in Refs. 17–19, 23–25, do not include long-range Coulomb interaction of

electrons at different lattice sites.

For calculations of energetic spectrum, free energy and electroconductivity of

disordered crystals in our work developed multi scattering theory based on Green’s

functions. Electronic correlations in crystal are described in multiband tight-binding

model. It includes wave functions and atomic potentials recalculation with taking

into account electronic density redistribution as a result of atomic interaction. The

model includes long-range Coulomb interaction of electrons on different sites of

crystal lattice. The wave functions of noninteracting atoms are calculated based on

Kohn–Sham equation using Perdew potentials.5–9 Electron scattering processes on

the ionic core potentials of different sorts and on oscillations of crystal lattice are

taken into account. Calculations of two-time Green’s functions based on tempera-

ture Green’s functions.27

This uses a known relation between spectral representation for two-time and

temperature Green’s function.28

Calculation of two-time Green’s function of disordered crystal is based on di-

agram technics, analogous to diagram technic for homogeneous system.28 Set of

equations for temperature Green’s function, expressions for free energy and electo-

conductivity of solids are derived. Accuracy of the energetic spectrum calculation,

free energy, and crystal conductivity calculations is based on renormalization of

vertex parts of the electron-electron and electron-phonon mass operators.
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2. Hamiltonian of Electrons and Phonons System for

Disordered Crystals

Hamiltonian of disordered system (alloy, disordered semiconductor) consists of

Hamiltonian of electrons in the external nucleus field, the Hamiltonian of electron-

electron interaction, the Hamilton of nucleus, and the Hamiltonian of electron-

nucleus interaction. Motion of ion subsystem reduces to nucleus oscillations near

equilibrium position under the influence of nucleus interaction force and their in-

direct interaction through electrons. In the Wannier representation, the system

Hamiltonian is:27

H = H0 +Hint , (1)

where zero-order Hamiltonian

H0 = H(0)
e +H

(0)
ph , (2)

consists of the Hamiltonian of the electrons in the field of cores of atoms ideal

ordered crystal.

H(0)
e =

∑
niγ
n′i′γ′

h
(0)
niγ,n′i′γ′a

+
niγan′i′γ′ , (3)

and the harmonic phonon Hamiltonian for the motion of the cores of atoms ideal

ordered crystal

H
(0)
ph =

∑
niα

P 2
niα

2Mi
+

1

2

∑
niα
n′i′α′

Φ
(0)
niα,n′i′α′uniαun′i′α′ . (4)

Here, the cores of atoms are located on a periodic lattice (i.e., the unperturbed

system is periodically ordered and has no disorder). The symbol n denotes the unit

cell, i denotes ith basis vector in the nth unit cell, and γ denotes all of the other

quantum numbers for the orbital, including spin. Disorder will enter for the species

of core at a particular lattice site, which need not be periodic via a perturbed

Hamiltonian term (see below). The symbol h(0) denotes the “hopping integral”

that connects the respective orbitals. For the phonon Hamiltonian, n and i are the

same as before, namely the unit cell and basis site within the unit cell, while α is

a spatial direction (x, y, or z). Pniα is the core momentum, Mi is the mass of the

core, uniα is the deviation of the core from the equilibrium position of the lattice

site, and Φ
(0)
niα,n′i′α′ is the corresponding spring-constant matrix.

The interaction Hamiltonian in Eq. (1) is the perturbation of the system due to

all of the effects we will be including. It is composed of six pieces:

Hint = δΦ +Hec +Heph +Hee +Hphc +Hphph , (5)

δΦ is the modification of the core-core Coulomb interaction due to the disordered

atoms added to the system; it is the difference between the original core-core re-

pulsion Hamiltonian and the new one. The electronic Hamiltonian is modified by
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the term

Hec =
∑
niγ
n′i′γ′

wniγ,n′i′γ′a+
niγan′i′γ′ (6)

which is the difference between the new hopping Hamiltonian and the original

periodic one. The electron-phonon interaction is given by

Heph =
∑
niγ
n′i′γ′

v′niγ,n′i′γ′a+
niγan′i′γ′ (7)

It is described in more detail below. The Hamiltonian of the Coulomb interaction

between electrons is given by the term

Hee =
1

2

∑
n1,n2
n3,n4

v(2)n1,n2
n3,n4

a+
n1
a+
n2
an3

an4
,

n = (niγ) .

(8)

The modification of the interaction of the phonons with the cores caused of the

disordering of the atoms is given by

Hphc =
1

2

∑
niα
n′i′α′

∆M−1
niα,n′i′α′PniαPn′i′α′

+
1

2

∑
niα
n′i′α′

∆Φniα,n′i′α′uniαun′i′α′ ,

(9)

where

∆M−1
niα,n′i′α′ =

(
1

Mni′
− 1

Mi

)
δnn′δii′δαα′ , (10)

∆Φniα,n′i′α′ = Φniα,n′i′α′ − Φ
(0)
niα,n′i′α′ , and Mni, Mi are the masses of the atoms

at site (ni) for disordered and ordered alloy, respectively.

We also include the cubic anharmonic potential terms for the phonons (under

the assumption that they remain small and can be treated perturbatively) via

Hphph =
1

3!

∑
niα
n′i′α′

n′′i′′α′′

Φniα,n′i′α′,n′′i′′α′′uniα × un′i′α′un′′i′′α′′ .
(11)

The operators a+
niγ , aniγ create and destroy electrons in the state described

by Vane’s function φniγ(ξ) = 〈ξ|niγ〉, where ξ = (r, σ′) are the spatial and

z-component of spin coordinates of the wave function.

To construct Wannier functions, we use analytical expressions for the wave func-

tions ψniδ(r− rni) of an electron in the field of nuclei of atoms of type λ localized

at the lattice sites (ni) of a perfectly ordered crystal. Here δ = ε̃lm is a superindex
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which incorporates the quantum numbers for the principle energy eigenvalue ε̃, the

standard angular momentum quantum numbers land m, r is the electron position

vector, rni is the position vector for the atom at site (ni) in equilibrium.

rni = rn + ρi ,

rn =
∑
ν

lνaν ,
(12)

rn is the position vector of the node n of the crystal lattice, ρi is the vector of

the relative position of the node of the sublattice i in the unit cell n. Vectors ρi
are called basic translation vectors of the crystal lattice, the number of which is

determined by the dimension of the crystal. The coordinates lν of the radius vector

of the crystal lattice rn node are integers.

Basis orthogonalization performed with Lowdin method:29∣∣∣ψ̃niδ〉 = S−1/2 |ψniδ〉 , Sniδ,n′i′δ′ = 〈ψniδψn′i′δ′〉 , (13)

where Sniδ,n′i′δ′ are overlapping matrix.

Vane’s functions φniγ(r, σ′), on which Hamiltonian of the system is represented

as in Eq. (1), are defined from equation:

φniγ(r, σ′) = ψ̃niδ(r− rni)χσ(σ′) , (14)

where χσ(σ′)-spin part of wave function, γ = δσ.

The orthogonized wave function can be represented as:

ψ̃niδ(r− rni) = R̃iδ(|r− rni|)Ylm(r̂− rni) ,

Ylm(r̂− rni) = Ylm(θ, ϕ) ,
(15)

where θ, ϕ are the angular spherical coordinates of the vector r − rni.
The radial part of the wave function is given by the equation

R̃iδ(|r− rni|)Ylm(θ = 0, ϕ = 0) =
∑

l
(1)
1 ,l

(1)
2 ,l

(1)
3 ,δ1

S
−1/2
n1i1δ1,niδ

Rε̃1l1(r1)Yl1m1(θ1, ϕ1) .

(16)

In expression (16),

r1 = r− rn1i1 = r− rni − rn1i1i , (17)

rn1i1i = rn1i1 − rni = (x1
n1i1i, x

2
n1i1i, x

3
n1i1i) , (18)

xαn1i1i =
∑
ν

l(1)
ν aαν + ραi1 − ρ

α
i , (19)

r1 =
(
r2
n1i1i + |r− rni|2 − 2 |r− rni|x3

n1i1i

)1/2

, (20)

θ1 = π − arccos
r2
n1i1i

− r2 − r2
1

2rr1
, (21)

ϕ1 = π − arctg
x2
n1i1i

x1
n1i1i

, (22)
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Here it is taken into account that the coordinates of the radius vector of the crys-

tal lattice site rn are equal lν = 0. In expression (18), x1
n1i1i

/rn1i1i, x
2
n1i1i

/rn1i1i,

x3
n1i1i

/rn1i1i there are projections of a unit vector directed along the vector

rn1i1 − rni, which are called directing cosines ln1i1i,mn1i1i, nn1i1i. The overlap ma-

trix Sniδ,n′i′δ′ is found from the equation:

Sn1i1δ1,n2i2δ2 =

˚
Rε̃1l1 (r1)Y ∗l1m1

(θ1, ϕ1)Rε̃2l2 (r2)Yl2m2
(θ2, ϕ2) r2

1

× sin θ1dr1dθ1dϕ1 . (23)

In expression (23),

r1 = r− rn1i1 , r2 = r− rn2i2 = r1 − rn2i2i1 ,

r2 =
((
x1

1 − x1
n2i2i1

)2
+
(
x2

1 − x2
n2i2i1

)2
+
(
x3

1 − x3
n2i2i1

)2)1/2

,

x1
1 = r1 sin θ1 cosϕ1, x

2
1 = r1 sin θ1 sinϕ1, x

3
1 = r1 cos θ1 ,

xαn2i2i1 =
∑
ν

l(2)
ν aαν + ραi2 − ρ

α
i1 , (24)

cos θ2 =
r1 cos θ1 − x3

n2i2i1

r2
, (25)

ϕ2 = arccos
r1 sin θ1 cosϕ1 − x1

n2i2i1

r2(1− cos2θ2)
1/2

. (26)

To find the matrix S
−1/2
n1i1δ1,niδ

in expression (16), we find the Fourier transform of

the matrix

Siδ,i′δ′ (k) =
∑
n′

Sniδ,n′i′δ′e
ik(rn′i′−rni) . (27)

The vector k is defined by the expression

k =
∑
ν

kνbν ,

(aνbν′) = 2πδνν′ ,

(28)

bν-basis vectors of translations of the reciprocal lattice.

Summing over n′ on the right-hand side of formula (27) is easy to do if we

replace it according to (12) by summing over and use

k (rn′i′ − rni) =

3∑
α=1

∑
v

kvb
α
v

(∑
v′

l′v′a
α
v′ + ραi′ − ραi

)
. (29)

The matrix Sniδ,n′i′δ′ has an infinite rank. The rank of the matrix Siδ,i′δ′ (k)

is finite, which allows you to find the matrix S
−1/2
iδ,i′δ′ (k). The matrix S

−1/2
n1i1δ1,niδ

in

expression (16) is found from the equation:

S
−1/2
niδ,n′i′δ′ =

1

N

∑
k

S
−1/2
iδ,i′δ′ (k) e−ik(rn′i′−rni) . (30)
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Values h
(0)
n1i1γ1,n2i2γ2

in Eq. (3) are the matrix elements of the kinetic and potential

energy
∑
ni

vλi (r− rni) of electron in the field of cores of atoms ideal ordered crystal

Values h
(0)
n1i1γ1,n2i2γ2

defined by expression:

h
(0)
n1i1γ1,n2i2γ2

= εi1ε̃δn1i1δ1,n2i2δ2δσ1,σ2
+

∑
l
(3)
1 ,l

(3)
2 ,l

(3)
3 ,i3 6=0,0,0,i1

vn3i3
n1i1γ1,n2i2γ2

, γ = δσ ,

(31)

vn3i3
n1i1γ1,n2i2γ2

=

˚
R̃i1δ1 (r1)Y ∗l1m1

(θ1, ϕ1) vi3 (r3) R̃i2δ2 (r2)Yl2m2

× (θ2, ϕ2) r2
1 sin θ1dr1dθ1dϕ1δσ1,σ2

, (32)

εi1ε̃ = −me
4(Zi1)

2

2~2ε̃2
, ε̃ = 1, 2, 3, . . . , vi3 (r3) = −Zi3e

2

r3
. (33)

In the formula (33), m, e — the mass and charge of the electron, respectively,

Zi are the ordinal number of an atom of the sort λ located in the site ni of an

ideally ordered crystal ~-Planck’s constant. The expression for r3 are obtained from

expression (24) for r2 replacement xαn2i2i1
by xαn3i3i1

.

The matrix element of the electron-ion interaction Hamiltonian in Eq. (6) is

given by

wniγ,n′i′γ′ =
∑
n′′i′′

wn
′′i′′

niγ,n′i′γ′ , (34)

where

wn
′′i′′

niγ,n′i′γ′ =
∑
λ

cλn′′i′′ w
λn′′i′′

niγ,n′i′γ′ , (35)

wλn
′′i′′

niγ,n′i′γ′ = vλn
′′i′′

niγ,n′i′γ′ + ∆vλn
′′i′′

niγ,n′i′γ′ − vi
′′

niγ,n′i′γ′ . (36)

The symbol vλn
′′i′′

niγ,n′i′γ′ is a matrix element of the potential of the core of the atom

vλi (r− rni).

Expression for vλn3i3
n1i1γ1,n2i2γ2

obtained from formula (32) vi3 (r3) by vλn
′′i′′ (r3)

replacing. In Eq. (35), cλni is a discrete binary random number taking the values of

1 or 0 depending on whether an atom of type λ is at site (ni) or not, respectively.

The symbol ∆vλn
′′i′′

niγ,n′i′γ′ will be defined next.

The expression for the electron-phonon interaction in Eq. (7) is found through

derivatives of the potential energy of the electrons in the ion core field due to a

displacement of the atom by the vector uni. In Eq. (7), the value of v′niγ,n′i′γ′ is

given by

v′niγ,n′i′γ′ =
∑
n′′i′′α

v′n
′′i′′α

niγ,n′i′γ′un′′i′′α , (37)

where

v′
n′′i′′α
niγ,n′i′γ′ =

∑
λ

cλn′′i′′v
′λn′′i′′α
niγ,n′i′γ′ (38)
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with v′λn
′′i′′α

niγ,n′i′γ′ the matrix elements of the following operator

−en′′i′′α
d

d |r− rn′′i′′ |
vλi

′′
(|r− rn′′i′′ |) ,

en′′i′′ =
r− rn′′i′′

|r− rn′′i′′ |
. (39)

Expression for v′λn3i3α
n1i1γ1,n2i2γ2

obtained from formula (32) replacing vi3 (r3) by

−
(
xα1 − xαn3i3i1

)
r3

d

dr3
vλn3i3 (r3) . (40)

The term ∆vλn
′′i′′

niγ,n′i′γ′ in Eq. (36) describes electron scattering on the static dis-

placement of the atoms and is defined by the equation

∆vλn
′′i′′

niγ,n′i′γ′ =
∑
α

v′
λn′′i′′α
niγ,n′i′γ′u

s,λ
n′′i′′α , (41)

where us,λn′′i′′αis the α-projection of the static displacement of the atom of type λ in

the site n′′i′′ caused by the difference in the atomic radii of the components of the

disordered crystal.

Upon receipt of expressions (34)–(41), it was taken into account that potential

energy operator of electron in the field of atoms core can be expressed: vni (r− r’ni),

r′ni = rni + usni + uni, where r — electron’s radius vector, rni — radius-vector of

atom’s equilibrium position in site of crystal lattice (ni), usni — vector of atom’s

static displacement from equilibrium position in site (ni), uni — atoms displace-

ment operator in site (ni). Expanding vni (r− r’ni) the series in powers uniα and

restricting ourselves to linear terms, we arrive at expressions (34)–(41).

The matrix of the force constants arising from the direct Coulomb interaction

of the ionic cores has the form:

Φniα,n′i′α′ = − ZniZn′i′e
2

4πε0|rn + ρi − rn′ − ρi′ |
5

×
[
3 (rnα + ρiα − rn′α − ρi′α) (rnα′ + ρiα − rn′α′ − ρi′α′)

−|rn + ρi − rn′ − ρi′ |
2
δαα′

]
, ni 6= n′i′ .

(42)

where Zni is the serial number of the atom located in the lattice site ni of the

disordered crystal, is given by the expression

Zni =
∑
λ

cλniZi . (43)

This matrix Φniα,n′i′α′ satisfies the following constraint:∑
n′i′

Φniα,n′i′α′ = 0 . (44)

2040065-9
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Matrix Φ
(0)
niα,n′i′α′ derived from expression for matrix Φniα,n′i′α′ in which Zni = Zi.

To calculate multicenter integrals v
(2)n1,n2
n3,n4 , n = (niγ) in formula (8), we approxi-

mate atomic orbitals by Gaussian functions in accordance with the formula:

R̃iδ (|r− rni|) =
∑
p

Apiδe
−bpiδ

(
(x1−x1

ni)
2
+(x2−x2

ni)
2
+(x3−x3

ni)
2
)
. (45)

The product of two Gaussian functions centered on different sites can easily be

reduced to one Gaussian function, the center of which in the general case does not

coincide with the lattice site.30 As a result, for multicenter integrals, we obtain the

expression:

vn1i1γ1,n2i2γ2
n3i3γ3,n4i4γ4

= e2δσ1σ4δσ2σ3

∑
p1,p2,p3,p4

Ap1i1δ1A
p2
i2δ2

Ap3i3δ3A
p4
i4δ4

×
¨

1

|r′ − r′′|
Rp1n1i1δ1,p4n4i4δ4

(∣∣r′ − rcn1i1,n4i4

∣∣)Rp2n2i2δ2,p3n3i3δ3

×
(∣∣r′′ − rcn2i2,n3i3

∣∣)Y ∗l1m1
(r′ − rn1i1)Y ∗l2m2

(r′′ − rn2i2)

× Yl3m3 (r′′ − rn3i3)Yl4m4 (r′ − rn4i4) d3r′1d
3r′′1 . (46)

In expression (46),

Rp1n1i1δ1,p4n4i4δ4

(∣∣r′ − rcn1i1,n4i4

∣∣)
= exp

(
− (bp1i1δ1 + bp4i4δ4)

∣∣r′ − rcp1n1i1δ1,p4n4i4δ4

∣∣2 + dp1n1i1δ1,p4n4i4δ4

)
, (47)

Rp2n2i2δ2,p3n3i3δ3

(∣∣r′′ − rcn2i2,n3i3

∣∣)
= exp

(
− (bp2i2δ2 + bp3i3δ3)

∣∣r′′ − rcp2n2i2δ2,p3n3i3δ3

∣∣2 + dp2n2i2δ2,p3n3i3δ3

)
, (48)

xαcp1n1i1δ1,p2n2i2δ2 =
bp1i1δ1x

α
n1i1

+ bp2i2δ2x
α
n2i2

bp1i1δ1 + bp2i2δ2
, (49)

dp1n1i1δ1,p2n2i2δ2 = (bp1i1δ1 + bp2i2δ2)
∑
α

(
xαcp1n1i1δ1,p2n2i2δ2

)2
− bp1i1δ1

∑
α

(
xαn1i1

)2 − bp2i2δ2 ∑
α

(
xαn2i2

)2
, (50)

xαn1i1 =
∑
ν

l(1)
ν aαν + ραi1 , x

α
n2i2 =

∑
ν

l(2)
ν aαν + ραi2 . (51)

In expression (49), xαcp1n1i1δ1,p2n2i2δ2
are the coordinates of the center of the Gaussian

orbital, to which the product of two Gaussian orbitals, centered on different sites

n1i1, n2i2 is reduced.

Spherical harmonics in expression (46) are calculated by the formula:

Y ∗l1m1
(r′ − rn1i1) = Y ∗l1m1

(θ′1, ϕ
′
1) , (52)

Yl4m4
(r′ − rn4i4) = Yl4m4

(θ′4, ϕ
′
4) , (53)
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Y ∗l2m2
(r′′ − rn2i2) = Y ∗l2m2

(θ′′2 , ϕ
′′
2) , (54)

Yl3m3
(r′′ − rn3i3) = Yl3m3

(θ′′3 , ϕ
′′
3) . (55)

In the formula (46),

|r′ − r′′| =

(∑
α

(x′α1 − x′′1α)
2

)1/2

, (56)

d3r′1 = r′21 sin θ′1dr
′
1dθ
′
1dϕ

′
1 , (57)

d3r′′1 = r′′21 sin θ′′1dr
′′

1dθ
′′

1dϕ
′′

1 . (58)

Using formulas (24)–(26), (32), integration in expression (46) can be performed

numerically.

So, formulas (24)–(26), (32) describe the procedure for calculating matrix ele-

ments h
(0)
n1i1γ1,n2i2γ2

, v
(2)n1i1γ1,n2i2γ2
n3i3γ3,n4i4γ4

Hamiltonian (1), containing one-electron and

two-electron integrals.

The matrix elements v
(2)niγ,n2i2γ2
n1i1γ1,n′i′γ′ in Eq. (46) for identical sites (ni) are cal-

culated by integrating over the corresponding angular variables. Integrals of the

product of three spherical functions (a so-called Gaunt integral) are found by using

Clebsch-Gordan coefficients.31 This yields

v
(2)niγ,niγ2
niγ1,niγ′

= e2δσσ′δσ2σ1

∑
|l−l′|≤l3≤l+l′
|l2−l1|≤l3≤l2+l1
l+l′+l3=2k,k1∈N
l2+l1+l3=2k1,k1∈N

1

2l3 + 1

[
(2l3 + 1)(2l′ + 1)(2l3 + 1)(2l1 + 1)

(2l + 1)(2l2 + 1)

]1/2

× c(l3l′l; 0, 0)c(l3l
′l;m′ −m,m′)c(l3l1l2; 0, 0)c(l3l1l2;m2 −m1,m1)

×
∑

p,p′,p1,p2

ApiδA
p′

iδ′A
p1
iδ1
Ap2iδ2

ˆ ∞
0

dr1r
2
1 exp−

(
(bpiδ + bp′iδ′) r

2
1

)
×
ˆ r1

0

dr2r
2
2

rl32
rl3+1
1

exp−
(
(bp1iδ1 + bp2iδ2) r2

2

)
+

ˆ ∞
0

dr2r
2
2 exp−

(
(bp1iδ1 + bp2iδ2) r2

2

)
×
ˆ r2

0

dr1r
2
1

rl31
rl3+1
2

exp−
(
(bpiδ + bp′iδ′) r

2
1

)
, (59)

where l and m are the standard angular momentum quantum numbers,

c(l′′l′l;m′′,m′) are the standard Clebsch-Gordan coefficients.31 Integration in for-

mula (59) can be performed analytically.
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3. Green’s Functions of Electrons and Phonons System

We employ a Green’s function based formalism to perform the calculations. Ulti-

mately, we need the real-time retarded GABr (t, t′) and advanced GABα (t, t′) Green’s

functions, which are each defined as follows:32

GABr (t, t′) = − i
~
θ(t− t′)〈[Ã(t), B̃(t′)]〉 ,

GABa (t, t′) =
i

~
θ(t′ − t)〈[Ã(t), B̃(t′)]〉 . (60)

Here, the operators are expressed in the Heisenberg representation

Ã(t) = eiHt/~Ae−iHt/~ , (61)

where ~ is Planck’s constant, H = H − µeNe, µe is chemical potential of the

electronic subsystem and Ne is the electron number operator given by

Ne =
∑
niγ

a+
niγaniγ . (62)

In addition, the commutator or anticommutator is defined via

[A,B] = AB ∓BA , (63)

where the commutator is used for Bose operators (−) and the anticommutator is

used for Fermi operators (+). The symbol θ(t) is Heaviside’s unit step function.

The angle brackets 〈. . .〉 denote the thermal averaging with respect to the density

matrix ρ

〈A〉 = Tr(ρA), ρ = e(Ω−H)/Θ , (64)

where Ω is thermodynamic potential of the system given by exp(Ω/Θ) =

Tr exp(−H/Θ) and Θ = kbT , with kb Boltzmann’s constant and T the temperature.

Note that even though the real-time Green’s functions appear to depend on two

different times, because of time-translational invariance for equilibrium systems,

they actually depend only on the time difference t− t′.
Our procedure for calculating the real-time Green’s functions follows the stan-

dard one—we first determine the thermal Green’s functions (defined below) and

then analytically continue them to real time using the conventional spectral rela-

tions.

The thermal Green’s function are defined by

GAB (τ, τ ′) = −〈Tτ Ã(τ)B̃ (τ ′)〉 , (65)

where the imaginary-time operatorÃ(τ) is derived from the real-time Heisenberg

representation and the substitution t = −i~τ . Hence,

Ã(τ) = eHτAe−Hτ . (66)

In addition, the time-ordering operator satisfies

TrÃ(τ)B̃ (τ ′) = θ(τ − τ)Ã(τ)B̃ (τ ′) +±θ (τ ′ − τ) B̃ (τ ′) Ã(τ) , (67)
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where the plus sign is used for Bose operators and the minus sign for Fermi

operators.

We next go to the interaction representation by introducing the operator

σ(τ) = eH0τe−Hτ , (68)

with H = H0 +Hint and H0 = H0 − µeNe.
Differentiating the expression for σ(τ) in Eq. (68) with respect to τ and then

integrating from 0 with the boundary condition σ(0) = 1, we obtain:

σ(τ) = Tτ exp

[
−
ˆ τ

0

Hint(τ
′)dτ ′

]
, (69)

where Hint(τ) = eH0τHinte
−H0τ . Employing this result yields

Ã(τ) = σ−1(τ)A(τ)σ(τ) , (70)

with A(τ) in the Heisenberg representation with respect to the noninteracting

Hamiltonian. Substituting these results into the definition of the thermal Green’s

function creates the alternate interaction-representation form for the Green’s func-

tion, given by

GAB(τ, τ ′) = −〈TτA(τ)B(τ ′)σ(1/Θ)〉0
〈σ(1/Θ)〉0

, (71)

where all time dependence is with respect to the noninteracting Hamiltonian and

the trace over all states is with respect to the noninteracting states

〈A〉0 = Tr(ρ0A), ρ0 = e(Ω0−H0)/Θ . (72)

This last result forms the starting point for the perturbative expansion employed

here.

The diagrammatic method is generated by expanding σ(τ) in a power series in

terms of Hint(τ) and then using Wick’s theorem to evaluate the resulting opera-

tor averages (since the noninteracting Hamiltonian is quadratic28). This technique

then generalizes the approach used for the homogeneous system.28The denomi-

nator in Eq. (71) cancels all disconnected diagrams in the expansion, as usual.

So the thermal Green’s function are expanded in terms of connected diagrams.

Using the standard relations between the spectral representations of thermal and

real-time Green’s functions,30 we obtain the following Dyson equation for the elec-

tronic Green’s function in the real frequency domain (hereinafter the dependence

on r is suppressed):28

Gaa
+

(ε) = Gaa
+

0 (ε) +Gaa
+

0 (ε) (w + Σeph(ε) + Σee(ε))G
aa+(ε)

Guu(ε) = Guu0 (ε) +Guu0 (ε) (∆Φ + Σphe(ε) + Σphph(ε))

×Guu(ε) +GuP0 (ε)∆M−1GPu(ε) ,

GPP (ε) = GPP0 (ε) +GPP0 (ε)∆M−1GPP (ε) +GPu0 (ε)

× (∆Φ + Σphe(ε) + Σphph(ε))GuP (ε) ,
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GuP (ε) = GuP0 (ε) +GuP0 (ε)∆M−1GPP (ε) +Guu0 (ε)

× (∆Φ + Σphe(ε) + Σphph(ε))GuP (ε) ,

GPu(ε) = GPu0 (ε) +GPu0 (ε) (∆Φ + Σphe(ε) + Σphph(ε))

×Guu(ε) +GPP0 (ε)∆M−1GPu(ε) , (73)

where ε = ~ω. Here Gaa
+

(ε), Guu(ε), GPP (ε), GuP (ε), GPu(ε) are the real-

frequency representation of the single-particle Green’s function of the electrons,

the coordinate-coordinate, momentum-momentum, coordinate-momentum, and

momentum-coordinate Green’s functions of the phonons, respectively; and Σeph(ε),

Σphe(ε), Σee(ε), Σphph(ε) are the corresponding self-energies (mass operators) for

the electron-phonon, phonon-electron, electron-electron and phonon-phonon inter-

actions.

The real-time and real-frequency Green’s functions are related by standard

Fourier transform relations given by,

GABr,a (t) =
1

2π

ˆ ∞
−∞

GABr,a (ω) e−iωtdω (74)

and

GABr,a (ω) =

ˆ ∞
−∞

GABr,a (t) eiωtdt . (75)

The thermal Green’s functions are periodic (bosons) or antiperiodic (fermions) on

the interval -1/Θ ≤ τ<1/Θ, and hence have a Fourier series representation in terms

of their Matsubara frequencies, as follows:

GAB(τ) = Θ
∑
ωn

GAB (ωn) e−iωnτ (76)

and

GAB(ωn) =
1

2

ˆ 1/Θ

−1/Θ

GAB(τ) eiωnτdτ , (77)

where the Matsubara frequencies satisfy

ωn =

{
2nπΘ for Bose particles ,

(2n+ 1)πΘ for Fermi particles ,

n = 0, ± 1, ± 2, . . .

(78)

Note that the thermal Green’s functions are equal to the retarded Green’s functions

evaluated at the Matsubara frequencies for positive Matusbara frequencies and are

equal to the advanced Green’s functions evaluated at the Matsubara frequencies

for negative Matsubara frequencies.

The electronic Green’s functions are infinite matrices with indices given by the

lattice site n, the basis site i, and the other quantum numbers γ. Similarly, the

2040065-14



July 13, 2020 8:47 MPLB S0217984920400655 page 15

Tight-binding model in the theory of disordered crystals

phonon Green’s functions also are infinite matrices with the same lattice and ba-

sis site dependence plus a dependence on the spatial coordinate direction α. This

produces some simple equations for the noninteracting Green’s functions, namely.28

Gaa
+

0 (ε) = [ε−H(1)
0 ]−1 , (79)

with

H
(1)
0 =

∥∥∥h(0)
n′/r,n′iγ′

∥∥∥ , (80)

Guu0 (ε) =
[
ω2M (0) − Φ(0)

]−1

, (81)

with

Φ(0) =
∥∥∥Φ

(0)
niα,n′i′α′

∥∥∥ (82)

and

M (0) = ‖Miδnn′δii′δαα′‖ . (83)

Here, the double lines denote a matrix.

When the perturbations are small, given by(
ε2

~2 ∆M + ∆Φ + Σphe(ε) + Σphph(ε)
)
niα,n′i′α′

Φ
(0)
niα,n′i′α′

� 1 , (84)

then the solution of the system of equations in Eq. (73) becomes

Gaa
+

(ε) =
[
ε−H(1)

0 − (w + Σeph(ε) + Σee(ε))
]−1

,

Guu(ε) =

[
ω2M (0) − Φ(0) −

(
ε2

~2
∆M + ∆Φ + Σphe(ε) + Σphph(ε)

)]−1

,

GPP (ε) =
ε2

~2

(
M (0)

)2

Guu(ε) ,

(85)

where

∆M = ‖(Mi −Mni)δnn′δii′δαα′‖ , ε = ~ω . (86)

The vertex correction Γn2i2α2
niγ,n1i1γ1

(τ2, τ, τ1) of the electronic self-energy due to the

electron-phonon interaction Σeph niγ,n′i′γ′(τ, τ ′) is described by the diagram in

Fig. 1. The solid lines correspond to electronic propagators Gaa
+

niγ,n′i′γ′(τ, τ ′) and

the dashed lines correspond to phonon propagators Gaa
+

niγ,n′i′γ′(τ, τ ′).

Note that the unshaded triangle in Fig. 1 corresponds to the equation

Γ
(0)n2i2α2

nij,n1i1γ2
(τ2, τ, τ1) = v

(n2i2α2

ni7,n1i1γ1
δ (τ − τ2) δ (τ − τ1) . (87)

In Fig. 1, the internal summations for ñγ imply both a summation over niγ and an

integration over the internal time τ .
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Fig. 1. Diagrams for the vertex corrections Γn2i2α2
niγ,n1i1γ1

(τ2, τ, τ1) = Γñ2α2
ñγ,ñ1γ1

. Here ñ = (niτ).

Explicitly, the electron-phonon self-energy become

Σeph niγ,n′i′γ′(ε) = − 1

4πi

ˆ ∞
−∞

dε′coth

(
ε′

2Θ

)
Γ

(0)n1i1α1

niγ, n3i3γ3

×
[
Guun1i1α1,n2i2α2

(ε′)−Guu ∗n1i1α1,n2i2α2
(ε′)
]
Gaa

+

n3i3γ3,n4i4γ4

× (ε− ε′)Γn2i2α2

n4i4γ4,n′i′γ′ , Γ
(0)n1i1α1

niγ,n3i3γ3
= v′n1i1α1

niγ,n3i3γ3
, (88)

where repeated indices are summed over.

The self-energy of the phonon due to the phonon-electron interaction is given

by

Σphe niα,n′i′α′(ε) =
1

2πi

ˆ ∞
−∞

dε′f (ε′) Γ
(0),niα
n2i2γ2,n1,i1γ1

×
{[
Gaa

+

n1i1γ1,n3i3γ3 (ε+ ε′)−Gaa+ ∗
n1i1γ1,n3i3γ3

(ε+ ε′)
]

×Gaa
+ ∗

n4i4γ4,n2i2γ2 (ε′) +Gaa
+

n1i1γ1,n3,i3γ3 (ε+ ε′)

×
[
Gaa

+

n4i4γ4,n2i2γ2 (ε′)−Gaa
+ ∗

n4i4γ4,n2i2γ2 (ε′)
]}

Γn
′i′α′

n3i3γ3, n4i4γ4
,

(89)

f(ε) — the so-called Fermi-Dirac distribution function. The vertex part

Γn2i2γ2,n1i1γ1
niγ,n′i′γ′ (τ2, τ1τ, τ

′) of the electronic self-energy Σee niγ,n′i′γ′(τ, τ ′) is given in

Fig. 2.

Note that the unshaded square in Fig. 2 corresponds to the equation

ṽ
(2)niγ,n2i2γ2
n1i1γ1,n′i′γ′ = v

(2)niγ,n2i2γ2
n1i1γ1,n′i′γ′ − v(2)niγ,n2i2γ2

n′i′γ′,n1i1γ1
. (90)

Using this vertex function, then yields the contribution to the electron self-energy

from the electron-electron interaction:

Σeeniy,n′i′γ′(ε) = Σ
(1)
eenty,n′i′γ′ + Σ

(2)
eeniy,n′i′γ′(ε) , (91)

Σ
(1)
ee n,n′ = − 1

2πi

ˆ ∞
−∞

dε′f (ε′) Γ
(0)n2,n1

n,n′

[
Gaa

+

n1,n2
(ε′)−Gaa

+

n1,n2
(ε′)
]
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Fig. 2. Diagrams for vertex part Γn2i2γ2,n1i1γ1
niγ,n′i′γ′ (τ2, τ1τ, τ ′) = Γñ2γ2,ñ1γ1

ñγ,ñ′γ′ . Here ñ = (niτ).

Σ
(2)
ee n,n′(ε) =

(
1

2πi

)2 ˆ ∞
−∞

dε1

ˆ ∞
−∞

dε2f (ε1) f (ε2) Γ(0)n,n3
n2,n1

×
[
Gaa

+

n2,n5
(ε− ε1 − ε2)Gaa

+∗
n1,n4

(ε1)−

−Gaa
+∗

n2,n5
(ε− ε1 − ε2)Gaa

+

n1,n4
(ε1)

]
×
[
Gaa

+

n6,n3
(ε2)−Gaa

+ ∗
n6,n3

(ε2)
]

−
[
Gaa

+

n2,n5
(ε− ε1 − ε2)−Gaa

+ ∗
n2,n5

(ε− ε1 − ε2)
]

×
[
Gaa

+

n1,n4
(ε1)Gaa

+

n6,n3
(ε2)

−Gaa
+ ∗

n1,n4
(ε1)Gaa

+ ∗
n6,n3

(ε2)
]}

Γn5,n6

n4,n′ , (92)

Γ(0)n,n3
n2,n1

= ṽ(2)n,n3
n2,n1

= v(2)n,n3
n2,n1

− v(2)n,n3
n1,n2

n = niγ (93)

A similar result for the contribution to the phonon self-energy Σphph(ε) from

phonon-phonon coupling, is given in Refs. 30–33

In deriving the expressions in Eqs. (88), (90), and (92), we employed the stan-

dard resummation techniques for any function φ(z) that is analytic in the region

covered by the contour C, which encloses all of the Matsubara frequencies. Namely,

we have

Θ
∑
cn

φ (iωn) =
1

4πi

“
C

dz coth
( z

2Θ

)
φ(z)

(ωn = 2nπΘ)

(94)

for the Bosonic case, and

Θ
∑
ωn

φ(iωn) = − 1
2πi

¸
C

dzf̃
(
z
Θ

)
φ (z)

(ωn = (2n + 1)πΘ)
(95)

for the Fermionic case, with

f̃
( z

Θ

)
=

1

exp
(
z
Θ

)
+ 1

. (96)
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We comment that for the many-body Green’s functions described here, it is cus-

tomary to have the chemical potential situated at zero frequency, as we do here.

In general, the renormalization of the vertex of the functions in the expressions

(88), (90), and (92) for mass operators can be performed using Figs. 1 and 2. The

diagrams in Figs. 1 and 2 corresponds to the equation

Γn
′i′α′

n3i3γ3,n4i4γ4 = Γ
(0)n′i′α′

n3i3γ3,n4i4γ4
− 1

2πi

ˆ ∞
−∞

dεf (ε)Γ
(0)n′i′α′

n5i5γ5,n6i6γ6

[
Gaa

+

n6i6γ6,n7i7γ7 (ε)

×Gaa
+

n8i8γ8,n5i5γ5 (ε)−Gaa
+∗

n6i6γ6,n7i7γ7 (ε)Gaa
+∗

n8i8γ8,n5i5γ5 (ε)
]

× Γ
(0)n9i9α9

n7i7γ7,n8i8γ8
Guun9i9α9,n10i10α10

(0) Γn10i10α10
n3i3γ3,n4i4γ4

(97)

and

Γn5,n6

n4,n′ = Γ
(0)n5,n6

n4,n′ − 1

2πi

ˆ ∞
−∞

dεf (ε)Γ(0)n5,n7
n4,n8

×
[
Gaa

+

n7,n9
(ε)Gaa

+∗
n8,n10

(ε)−Gaa
+∗

n7,n9
(ε)Gaa

+

n8,n10
(ε)
]

× Γn9,n6

n10,n′ , n = niγ . (98)

By repeated indices in expressions (97) and (98), summation is implied. The Fermi

level εF ≡ µe of the system is determined by the equation:

〈Z〉 =

ˆ ∞
−∞

f(ε)ge(ε)dε ,

f(ε) =
1

exp( ε−εFΘ ) + 1
, (99)

where 〈Z〉 is the average number of electrons per atom and ge(ε) is the many-body

electronic density of states, which satisfies

ge (ε) = − 1

πνN
Im Tr

〈
Gaa

+

(ε)
〉
c
. (100)

Here, 〈. . .〉c denotes configurational averaging over the disorder, N is the number

of primitive lattice cells and ν is the number of atoms per primitive cell. We drop

the letter c on the configurational averaging for simplicity. In Eq. (99), we have 〈Z〉
is the average number of electrons per atom.

It should be noted that the first term in the electron self-energy due to electron-

electron interactions, Σ
(1)
ee niγ,n′i′γ′ in Eq. (91), describes the Coulomb and exchange

electron-electron interactions in the Hartree-Fock approximation. The second term,

Σ
(2)
ee niγ,n′i′γ′(ε), which is caused by corrections beyond Hartree-Fock, describes the

effects of electron correlations. The expression for the Green’s function in Eq. (85)

differs from the corresponding expressions for the Green’s function of a single-

particle Hamiltonian of a disordered system only from the different self-energy con-

tributions. Hence, we solve for the Green’s function using the well-known methods

of disordered systems theory.33
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Performing averaging over the distribution of atoms of different sort and local-

ized magnetic moments projection at the sites of the crystal lattice and neglecting

the contribution of processes of electron scattering in clusters consisting of three or

more atoms that are small by the above parameter35 for the density of electronic

states we obtain:

ge (ε) =
1

v

∑
i,δ,σ,λ,mλi

Pλmλi0i gλmλi0 iδ σ (ε) , (101)

gλmλi0 iδ σ (ε) = − 1

π
Im

G̃+ G̃tλmλi0i G̃+
∑

(lj)6=(0i)λ′,mλ′j

P
λ′mλ′j/λmλi
lj 0 i

× G̃
[
t
λ′mλ′j
lj + T (2)λmλi 0i,λ′mλ′j lj

]
G̃


0iδσ,0iδσ

,

T (2)λmλi0i,λ
′mλ′j lj =

[
I − tλmλi0iG̃tλ

′mλ′j ljG̃
]−1

tλmλi0iG̃tλ
′mλ′j lj

[
I + G̃tλmλi0i

]
(102)

where G̃ = G̃aa
+

(ε).

Similarly averaging of the phonon Green’s function Guu(ε) yields the phononic

density of states:

gph (ε) =
1

ν

∑
i,α,λ

Pλ0ig
λ
0iα (ε) ,

gλ0iα(ε) = − 1

π
2
ε

~2
Mi Im

{
G̃+ G̃ tλ 0i G̃ +

∑
(lj)6=(0i)

λ′

P
λ′/λ
lj 0i

× G̃
[
tλ

′ lj + T (2)λ0i,λ′lj
]
G̃
}0iα,0iα

, (103)

where G̃ = G̃uu(ε).

The free energy per atom, can be presented by35,36

F = 〈δΦ〉 −Θ Sc + Ωe + Ωph + µe〈Z〉 , (104)

where Ωe, Ωph are given by

Ωe = −Θ

ˆ ∞
−∞

ln
(

1 + e(µe−ε)/Θ
)
ge(ε)dε , (105)

Ωph = Θ

ˆ ∞
−∞

ln
(

1− e−ε/Θ
)
gph(ε) dε . (106)

Here, Sc is the configurational entropy.
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Employing the diagram technique outlined above and in Refs. 35 and 36, and

neglecting contributions to electron scattering on clusters of three or more sites,

yields the following for the DC conductivity (ω → 0):

σαβ =
e2~

4πV1


ˆ ∞
−∞

dε1
∂f

∂ε1

∑
s,s′=+,−

(2δss′ − 1)
∑
i,γ

{
[vβK̃

(
εs1, vα, ε

s′

1

)
]

+
∑
λ,mλi

Pλmλi0i K̃(ε1
s′ , vβ , ε1

s)(tλmλi0i (ε1
s)K̃(ε1

s, vα, ε1
s′)tλmλi0i (ε1

s′)

+
∑
λ,mλi

Pλmλi0i

∑
lj 6=0i,
λ′,m

λ′j

P
λ′mλ′j/λmλi
lj 0i

[
[K̃(ε1

s′ , vβ , ε1
s)vαG̃(ε1

s′) ]

× T (2)λmλi0i,λ
′mλ′j lj(ε1

s′)[K̃(ε1
s, vα, ε1

s′)vβG̃(ε1
s)]T (2)λ mλi0i,λ

′mλ′j lj(ε1
s)

+ K̃(ε1
s′ , vβ , ε1

s)
[
(t
λ′mλ′j
lj (ε1

s)K̃(ε1
s, vα, ε1

s′)tλmλi0i (ε1
s′)

+
(
tλmλi0i (ε1

s) + t
λ′mλ′j
lj (ε1

s)
)
K̃(ε1

s, vα, ε1
s′)T (2)λ mλi0i,λ

′mλ′j lj(ε1
s′)

+ T (2)λ′mλ′j lj,λmλi0i(ε1
s)K̃(ε1

s, vα, ε1
s′)tλmλi0i (ε1

s′)

+ T (2)λ′mλ′j lj,λmλi0i(ε1
s)K̃(ε1

s, vα, ε1
s′)T (2)λmλi0i,λ

′mλ′j lj(ε1
s′)

+ T (2)λ′mλ′j lj,λmλi0i(ε1
s)K̃(ε1

s, vα, ε1
s′)T (2)λ′mλ′j lj,λmλi0i(ε1

s′)
]]}0iγ,0iγ

+

ˆ ∞
−∞

ˆ ∞
−∞

dε1dε2f (ε1) f (ε2)
〈
∆GIIαβ (ε1, ε2)

〉}
, (107)

where

K̃
(
εs1, vα, ε

s′

1

)
= G̃aa

+

(εs1) vαG̃
aa+

(
εs

′

1

)
,

G̃aa
+ (
ε+

1

)
= G̃aa

+

r (ε1) (108)

G̃aa
+ (
ε−1
)

= G̃aa
+

a (ε1) =
(
G̃aa

+

r

)∗
(ε1) .

The electron velocity satisfies the conventional definition

vα(k) =
1

~
∂H

(1)
0 (k)

∂kα
. (109)

Note that, the computation accuracy is determined by renormalization precision

of the vertex parts of the mass operators of electron-electron and electron-phonon

interactions. This accuracy also can be determined by small parameter of cluster

expansion for Green’s functions of electrons and phonons.
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4. Conclusions

This work presents a new method of describing electronic spectrum, thermodynamic

potential and electrical conductivity of disordered crystals based on the Hamiltonian

of multi-electron system and diagram method for Green’s functions finding. Precise

expressions for Green’s functions, thermodynamic potential and conductivity tensor

are derived using diagram method. The computation accuracy is determined by

renormalization precision of the vertex parts of the mass operators of electron-

electron and electron-phonon interactions. This accuracy also can be determined

by small parameter of cluster expansion for Green’s functions of electrons and

phonons.

The microelectronics phenomena in different submicrostructures, high level

parameter integrations and packing, are very important from many aspects of fun-

damental research. From one side, it is important to fulfill many goals on the way to

miniaturization, but for such scientific question there are many open problems very

creative for advance investigations. Anyhow, the scientific perspectives in classic

semiconductor technologies are not with an open vision to give new fundamen-

tal results. There are strong technological limitations to make thinner and thinner

layers for microelectronics demands. Our research try to open new frontiers and

in the fields of electronics parameter integrations instead of different microde-

vices technological integration (Fig. 1). But, this scientific and research problem

is not easy to understand, because of many open questions and not enough investi-

gated problems and appropriate answers. One of these aspects is much more deeply

and precisely controls of the particles motion and their trajectories phenomena

changes.

Therefore, we have developed the research results on the field of Brownian par-

ticles motion. Also, here we applied fractal nature in Brownian motion chaotically

structures. On that way, we practically developed the mathematical-physics meth-

ods to control chaotically motion and transform to control structures on the way

to real particles order. From these points of view, we are coming to the point to

explain and understand some processes in the nature of material sciences, espe-

cially ceramic structures. For these problems, we have open frontiers to use some

ideas of similarities in the motion of particles from phenomena in the live sys-

tems and to compare with particles motion in inorganic world. All of these are

specific ideas of biomimetic similarities. This Brownian particles motion effects

have a great importance for advanced miniaturization and packaging presented

on Fig. 1.

Some of our experimental results with sub-microorganisms of size between

0.5 µm and 3 µm are inspiration for Brownian motion fractal nature analysis,

which could be applicable for particles such as electrons. For better understanding

of these processes, we provide some necessary tools for further research.
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