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Abstract. A new theoretical approach is proposed to study the states responsible
for the superconductivity of crystals. Within the framework of the approach it is
shown that in the electron–phonon system a class of new so-called coupled states
arises. Electron-pair states with k1 + k2 = 0, s + s ′ = 0, postulated in the BCS
method are included in this class in a natural manner. The model numerical
calculations have shown that the SC gap depends on the number of bands crossing
the Fermi level and on the momenta k1 + k2 = K 6= 0 of interacting electrons and
that the temperature dependence of the SC gap for HTSCs is more complicated (in
agreement with the recent experimental data) than predicted in the BCS approach.

1. Introduction

The explanation of the high-Tc superconductivity of these
crystals is now one of the important problems in condensed
matter physics. This is confirmed by numerous papers
and review articles [1–8] concerned with this aspect but
the theoretical models describing this phenomenon are still
in development even though this may be one of the most
important questions. That is clearly seen for example from
[5, 7] where the discussion of the mechanisms of SC is the
dominant problem of these articles. We want to look at
this problem once more and to study in more detail some
aspects of electron–phonon interactions. Theoretical study
of superconductivity is based as a rule on the physical idea
of pairing of electrons with opposite spins (s + s ′ = 0)
and momenta (k + k′ = 0) (e.g. [1, 2, 5]; the presence of
electron pairing is postulated in all mechanisms). Using
this postulate the possibility of the coupled states arising
in the electron (electron–phonon) system was investigated.
These states are responsible for superconductivity in this
system.

In this work a new approach to the SC problem is
proposed (as a first step we will study the density of
electron states (DES) in a crystal). Within the framework
of our approach we do not supposea priori that special
pairing of electrons (with opposite spins and momenta
as is traditionally supposed in the BCS method) takes
place. However, electrons in the crystal have to satisfy the
following natural conditions: (i) they move in the crystal
under a periodic field generated by the lattice ions; (ii) the
electrons interact with each other and the ions of the lattice
by the Coulomb law, which means that colliding electrons
may possess arbitrary momenta (k) and spins (s) allowed

by the corresponding electron zone (band) they belong to;
(iii) the structure and symmetry of electron bands are given
by the crystal structure.

From our calculations it follows that new so-called
coupled states can arise in the electron system which
give rise to the lowering of the system energy and to
the appearance of new features in the density of states.
The appearance of these states depends on the constants
of electron–electron and electron–phonon interactions, on
the structure of electron bands and on the temperature of
the crystal. Similar types of excitations are well known
in phonon and polariton spectra of crystals ([9, 10] and
references therein). The essential difference is that the
electrons have their own magnetic moment (spin), and
therefore the coupled states in the electron system will
also depend on the spins of the crystal electron bands
generating these coupled states. It will be seen that the
energies of some of the discussed coupled states precisely
coincide with the values of the energy which are obtained
for the superconducting gap using the traditional BCS
pairing approach. However, our results show that many
other states (with nonzero momenta (K = k + k′ 6= 0)
and spins (S = s + s ′ 6= 0) of interacting electrons) also
contribute to the SC of crystals (see also [11, 12]). It should
also be noted that the presence of several electron bands
crossing the Fermi level (or closely located to the latter)
gives rise to qualitatively new features in the density of
states of the electron system (for example, coupled states
with a whole number (S 6= 0) of spins and located apart
from the Fermi level can arise). The spin features (S 6= 0)
agree with some results of recent work [13].
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2. Density of current and Hamiltonian

In this article we present the general idea of our approach.
The density of current can be written [14]

〈j ′(x, t)〉 = 〈j (x)〉0− e2

mc
〈n(x)〉0A(x, t)+ higher order

(1)

〈n(x)〉0 = 〈9+(x)9(x)〉0
= lim

x ′→x,t ′→t−0
[δ(x − x ′)− i〈−iT9(x, t)9+(x ′, t ′)〉]

= 1

V0

[∑
k

1− i
∑
k,ω

G(k, ω)

]
(2)

where the operators9(x) satisfy the Fermi commutation
relations and are given by the expression

9(x) =
∑
k,σ,ν

aνk,σ ϕ
ν
k,σ (x) (3)

where

ϕνk,σ (x) = ϕνk (x)χσ (s) [aνk,σ , a
+ν ′
k′,σ ′ ]+ = δk,k′δσ,σ ′δν,ν ′

(4)
ϕνk (x) is the Bloch function of an electron in theνth energy
band of the crystal andχσ (s) describes the spin of this
electron. The DES〈n(x)〉0 is expressed (equation (2)) by
the Fourier components of the Green functionG(k, ω); V0

is the volume of the crystal.
The Hamiltonian describing the system of interacting

electrons and phonons of the crystal after transformation
by a unitary operator is written in the following form (it
will be described in more detail elsewhere; see also [9, 10]):

H =
∑
k,ν

(
ενk −

1

N

∑
s,q

|χsq |2
�s,q

)
A+k,νAk,ν

+ 1

2N

∑
q,k,ν,k′,ν ′

(
Vq − 2

∑
s

|χsq |2
�s,q

)
×A+k,νA+k′,ν ′Ak′+q,ν ′Ak−q,ν +

∑
s,q

�s,qβ
+
s,qβs,q

− 1

N1/2

∑
k,q,ν

(ενk − ενk−q)A+k,νAk−q,νσq (5)

whereVq = V−q , χ∗sq = χs−q are the Fourier components
of the Coulomb interaction of electrons with each other
and their coupling constant with the lattice phonons
respectively;ενk is the energy of the electron. The constants
Vq andχsq are both independent of the band and spin indices
of electrons.

aνk = [exp S]Ak,ν [exp(−S)]
bsq = [exp S]βs,q [exp(−S)] (6)

whereS is an anti-hermitian operator (S+ = −S) and the
σq operator is linear on the phonon operatorsβs,q, β+s,q .

In equation (5) we united two indexes so thatν =
(ν, σ ), ν ′ = (ν ′, σ ′) are the complex indices which
characterize the number of the crystal band and the spin
of the electron.

The unitary transformation gives rise to renormalization
of the electron energy (first term) and renormalization of
the Fourier component of the Coulomb electron–electron
interaction. In the latter case we can conclude that if the
crystal unit cell contains many atoms the effective Coulomb
potential can become negative and large in value.

3. Two-particle Green function, coupled states
and gap

To calculate the DES we have to study the Green function
for the case with approximationt ′ → t − 0 in accordance
with equation (2). When this situation arises the two-
particle Green function can be written as follows:

G2(
k2,ν2;k,ν
k+q,ν;k2−q,ν2

; t − t ′) = |〈−iTAk+q,ν(t)Ak2−q,ν2(t)

×A+k2,ν2
(t ′)A+k,ν(t

′)〉| t ′ → t − 0. (7)

Such a two-particle Green function satisfies the Bethe–
Salpeter type of equation (we do not split this function into
two one-particle Green functions of the Gorkov type [15]).
The solution this equation according to the Bogolubov–
Tyablikov method [14, 16] gives rise to the following
expression for the Fourier component of the two-particle
Green function:

G2(
k2,ν;k1,µ

k1+q,µ;k2−q,ν |ω)
∼ f (k1, µ; k2, ν;ω)

∑
σ,σ ′ ϕ(µ, ν; σ, σ ′)

1− VK(k1, µ; k2, ν;ω) (8)

K(k1, µ; k2, ν;ω) = 1

N

∑
q

1− nµk1+q − nνk2−q
ω − εk1+q,µ − εk2−q,ν

V = Ṽq = Vq − 2
∑
s

|χsq |2
�s,q

≈ constant (9)

nνk is the filling number of electrons; V is the
effective Fourier component of the electron–electron (e–e)
interaction. If the constant of the e–e interaction
renormalized by the electron–phonon interaction becomes
negative (V > 0) the appearance of new types of
states (coupled states) in the electron system is possible.
Equations (8) and (9) give the spectral features in the
region of two-particle states. Therefore, let us study these
expressions. It is seen from equations (8) and (9) that if
the momenta of interacting electrons satisfyk1 = k2 = 0
or k2 = −k1 the denominator in the right-hand side
of equation (8) is precisely reduced to the well-known
expression describing the SC gap of a crystal, but for
other arbitrary monentak1 and k2 of the electrons the
situation is significantly different. From equations (8) and
(9) it follows that in addition to states corresponding to
traditional BCS pairing there are many new states occurring
in equation (8) and contributions to the SC gap which,
hence, depends on the momenta of the interacting electrons.
This will be shown below. The numerator of the right-
hand side of equation (8) gives rise to new possibilities.
Here f (k1, µ; k2, ν;ω) is some function depending on
the frequency (ω) and momentak1 and k2 of interacting
electrons; the second functionϕ(µ, ν; σ, σ ′) is expressed in
terms of functionsδi,j and defines the spin-forbidden rules
for the coupled state (responsible for superconductivity
effects):

ϕ(µ, ν; σ, σ ′) = δσσ δσ ′σ ′ − δµνδσσ ′δσσ ′ (10)

whereσ, σ ′ are the spins of the first (σ ) and second (σ ′)
electrons;µ, ν indicate the number of the electron band.
The following particular cases are possible.

5



S P Kruchinin and A M Yaremko

(i) µ = ν. (1) If the spins of the electrons are
equal to each other (σ = σ ′) then ϕ(µ,µ; σ, σ ′) = 0.
(2) If the spins of both electrons are different (σ 6= σ ′)
the second term in the right-hand part of equation (10)
(which is proportional toδσ,σ ′ ) disappears and therefore
ϕ(µ,µ; σ, σ ′) 6= 0. This means that only states with
oppositely directed spins (namely singlet statesσ + σ ′ = 0
in this simplest case) can contribute to the coupled states
of the electron system.

(ii) µ 6= ν. This case corresponds to a more complex
structure of the crystal zones (in particular that which
occurs for layers of the Bi-based type of crystal [17, 18]).
The second term in the right-hand part of equation (10)
(which is proportional toδµν) disappears and therefore
ϕ(µ, ν; σ, σ ′) 6= 0 for all values of the spins. This
means that all possible spin states (for exampleσ + σ ′ =
0,±1, . . .) are admitted.

The energy positions of coupled states are given by
the zeros of the denominator of the right-hand side of
equation (8) and depend on the functionK(k1, µ; k2, ν;ω)
and the constantV (equation (9)). Let us study the
particular case supposing thatk1 = k2 = k0 = k and that
εk0,µ = εµ corresponds to the extremum of the zone. Then
expanding the energy in terms of the momentumk ± q in
series up to terms of second order we can obtain

εk±q,µ = εµ + (k ± q)
2

2mµ
= εf +1µ + (k ± q)

2

2mµ
(11)

wheremµ is the effective mass of an electron in theµth
(µ = 1, 2, . . .) energy band of the crystal.1µ is a
parameter which indicates the position of the extremum
of µ band relative to the Fermi level. It may be
negative or positive and the effective mass the same. (The
anisotropy of the crystal can be simply taken into account
by the anisotropy of the effective mass in equation (11).)
In the traditional approximation (µ = 1) the function
K(k, µ; k, µ;ω) and the SC gap are described by the
well-known standard expressions [12] but exact numerical
calculation of functionK(k, µ; k, µ;ω) gives rise to new
features especially if several electron bands (µ 6= 1) are
taken into consideration. This is because the analytical
analysis does not take into account many features which
are contained in the functionK(k, µ; k, ν;ω) because of the
influence of momenta and temperature through the electron
filling number. It should also be noted that for some types
of SC crystals the minimum of the electron band is located
much lower (for Ba2Sr2CaCu2O8 [17, 18]) than the Fermi
level energy. As an example two cases of Bi-based crystals
are presented in figure 1.

Figure 1(a) shows the band structure obtained by
Sterne and Wang [17, 19] for the high-Tc Ba2Sr2CaCu2O8

compound which is very similar to calculations of
Hyberstein and Mattheiss [20], Krakaner and Pickett [18]
and Freemanet al [21]. The new feature of this compound
is the presence of two bismuth p-electron bands which dip
belowEF by about 0.7 eV around the K point. A shallow
band of mixed Bi and Cu–O2 character which barely crosses
EF and a more dispersive band which has almost pure
bismuth character crossingEF are seen, indicating that

Figure 1. Energy band structures around the Fermi energy
for (a) the high-temperature superconductor
Ba2Sr2CaCu2O8 and (b) the low-temperature
superconductor Bi2Sr2CuO6 from [19].

bismuth oxide layers are metallic. It should also be noted
that the Krakaner–Pickett calculations showed that mixed
Bi–CuO bands can arise and extend near 0.1–0.5 eV higher
thanEF .

For comparison the band structure of the low-Tc
Bi2Sr2CuO6 compound is shown in figure 1(b). The
principal difference between the band structures of crystals
can be observed around the K point. The two Bi
p bands barely cross and extend less than 0.1 eV below
EF , compared with 0.7 eV in the case of the higher-
Tc compound in figure 1(a). This difference in the
location of extremal bands relative toεf (parameter1µ in
equation (11)) is very important for the value ofTc and for
small1µ the coupled states and SC effect may be absent
as was shown in [12].

Therefore we will study theoretically the situation close
to the Ba2Sr2CaCu2O8 crystal because it has a highTc.

The results of some numerical calculations are given in
figures 2 and 3. The effect of temperature is seen in figure 2
where theT dependences ofK(k, µ; k, ν;ω) functions for
different electron band structures are presented. It follows
from figure 2(c) that the presence of several electron bands
generates aK(k, µ; k, ν;ω) function having the minimum
located apart from the 2εf energy level. The arrows 5–7
in figure 1(a) correspond to different values of the constant
1/V (V < 0) (see caption to figure). The intersection, if
it occurs, of curves 1–4 with the extensions of the arrows
gives the energy of coupled states because the solutions
obtained correspond to the zeros of the denominator in the
right-hand side of equation (8).

Therefore the coupled states obtained from the crossing
of the extensions of the arrows 5–7 with the functionK in
figure 2(c) will also be located a substantial distance from
the 2εf energy level. As result theT dependence of the SC
state (SC gap) may become more complicated than for only

6
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Figure 2. The effect of temperature on the K (k , µ; k , ν;ω)
function (E = k 2/2m = 0) for different structures of the
energy zones: (a) 11 = −1, m∗1 = 1; (b) 12 = 0.2, m∗2 = −2;
(c) 11 = −1, m∗1 = 1, 12 = 0.2, m∗2 = −2; curves 4, T = 2 K;
curves 3, T = 10 K; curves 2, T = 50 K; curves 1,
T = 100 K; arrows 5–7 correspond to different 1/V values
(arrow 5, V = −0.07; arrow 6, V = −0.06; arrow 7,
V = −0.05). All energy values are taken as arbitrary
values, i.e. V = V /M , where M is a scale factor (M = 1 eV,
for convenience; m∗i = mi/m, m is the free electron mass).

Figure 3. The temperature dependences of the SC gap:
(a) calculated dependences of the SC gap for different
values of the effective e–e interaction parameter V (the
structure of the electron bands and meaning of V as in
figure 2(a)); (b) experiment (•,1) and theory (——, BCS;
our calculation).

one electron band. In figure 1 the curves 4→ 1 describe
the change of theK(k, µ; k, ν;ω) function with increase
of temperature. Therefore, for a fixed value of the constant
V (arrow 7, for example) the coupled states arise at low
temperature (curve 4) but disappear at higher temperatures
(curves 3–1). The temperature dependence of the coupled
state energies (for the case of the band given in figure 1(a))
is shown in figure 3(b) by curves 1, 1′ and 1′′ (full lines)
corresponding to different values of the parameterV . The
obtained dependences are not similar to standard BCS ones.
For illustration the experimental dependences of the SC gap
obtained in [22] for Ba2Sr2CaCu2O8 crystal are presented in
figure 3(a) together with the theoretical curves of BCS type
and our calculation. It is clearly seen that our calculation

predicting the maximum in theT dependence of the SC gap
gives the curve which is closer to the experimental results.

In our approach we take into account that all electron
bands (the numerical calculations show that only bands
located near the Fermi level are important) contribute to the
coupled states. Therefore the energy of the coupled states
depends on change with temperature of the filling number
nk and on the DES, i.e. on the dispersion of the electron
band. The latter means that the resultingT dependence of
the SC gap may be more complicated, especially for the
presence of several bands near the Fermi level.

Moreover, the presence of some electron bands crossing
the Fermi level generates a very complex density function
of two-electron states (responsible for the appearance of
coupled states) and as a result a singularity in the density of
two-electron states (saddle point type) may arise within the
band (far from the Fermi level energy) which can dominate
the description of the SC properties of the crystal. This is
demonstrated in figure 2(c).

Our calculations also show that the SC gap depends
on the momenta (k) of the interacting electrons. However,
coupled states arise ifk ≤ klim where klim depends on
V . It is obvious that thek factor must be contained in
the experimentalT dependence of the SC gap and so that
may be one of the reasons for the difference between the
curve YK (figure 3(a)) calculated by us fork = 0 and
experimental results.

4. Conclusion

In conclusion, a new theoretical approach is proposed
for the study of the coupled states responsible for
superconductivity in crystals without using the idea of
electron pairing. In the proposed approach it is shown
that SC coupled states arise naturally as poles of the two-
particle Green function and are created as a result of the
effective Coulomb interaction of electrons with nonzero full
momenta and spins (k1+ k2 6= 0, s+ s ′ 6= 0) in the general
case. The model numerical calculations have shown that
the dependence of the SC gap (energy of coupled states)
on temperature is different from the BCS type and depends
on the momenta of interacting electrons.
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