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Abstract: This study explores the applications of extended Gauss–Hertz variational principles
to determine the evolution of complex systems under the influence of impulse actions, coherent
accelerations, and their application to electrophysical systems with fractal elements. Impulsive effects
on systems initiate coherent accelerations (including higher-order accelerations, such as modes with
intensification), leading to variations in connections, structure, symmetry, and inertia; the emergence
of coherence; and the evolution of fractal elements in electrophysical circuits. The combination of
results from the non-local Vlasov theory and modifications to the Gauss–Hertz principle allows for
the formulation of a variational principle for the evolution of fractal systems. A key feature of this
variational principle is the ability to simultaneously derive equations for both the system’s dynamics
and the self-harmonizing evolution of its internal symmetry and structure (e.g., fractal parameters).

Keywords: extended Gauss–Hertz principle; dynamic self-harmonization functional of fractal
systems; Vlasov equation; variation in structure and symmetry; variation in inertia; coherent
acceleration; modes with intensification; energy flow in phase space; fractal dimension; structural
evolution equations

1. Introduction

This study investigates the laws governing the evolution of complex fractal systems [1–7],
focusing on the changes in internal structure, the variation in connections in mechanical
systems, and electrophysical circuits with fractal elements. Fractal conductors, capacitors,
and inductors are considered elements of electrophysical circuits, which become active
under impulse action.

Section 1 provides a description of the basic concepts and models that are necessary to
describe the evolution of complex, fractal mechanical, and electrodynamic systems.

Section 2 describes the extension of the variational principle for the harmonious
unification of the dynamics and evolution of dynamic systems (see also [8–11]). The
formulation of the variation principle of the evolution of dynamic systems is based on
taking into account the change in the structure of the system’s connections, the possibility
of the emergence of scale invariance, memory, coherence, and non-locality in the system of
particles, which are characteristic of all phase transitions and critical states. The variation
principle of evolution is formulated based on the minimization of the functional dynamic
self-harmonization of systems with a changing structure.
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Section 3 contains a complete description of an electrophysical system with a changing
structure. It is necessary to add to Maxwell’s equations for EM fields the equations of the
evolution of connections and their internal structure, which are considered based on the
application of the variational principles of dynamic self-harmonization and the evolution
of fractal systems.

Section 4 presents both the regularization of the dynamics of charges in conducting
media with a fractal structure and the variational principle of dynamic self-harmonization
of a system of charges. Generalized Kirchhoff equations for electrical circuits with changing
structure, connections, and impedance are obtained.

The first variational principles arose from describing the dynamics of mechanical
systems of point particles, leading to Newton’s equations considering constant conne-
ctions [7–10]. Point particles were characterized solely by mass [11], a scalar measure of
a particle’s inertia relative to the system’s translational motion (translational symmetry).
What is now known as Newtonian mechanics was formulated in modern terms by L. Euler
in works from 1735 to 1758, using familiar terminology today. In 1771, Euler established
that the equations for momentum and kinetic moment balance are independent laws of
mechanics, identifying the incompleteness of Newton’s dynamic equations and developing
Eulerian mechanics, where an “elementary” material particle has both momentum and
intrinsic kinetic moment. In Eulerian mechanics, two types of forces are introduced [12–14]:

• Forces expressed by polar vectors are called forces.
• Forces expressed by axial vectors are called moments.

In Newtonian mechanics, the fundamental object is a material point characterized by
a single property, inertia relative to translational motion (mass), allowing only one type of
point particle. Post-Maxwell electrodynamics introduced three types of particles: neutral,
positively charged, and negatively charged.

The following definition of the dimension of a point body can be introduced: the
number of independent parameters determining its kinetic energy is called the dimension
of the point body. The dimension of “elementary” particles (point bodies) can be described
as follows:

• One in Newtonian mechanics,
• Four in macroscopic processes based on Newtonian mechanics considering finite

particle sizes,
• Greater than four in electrodynamics (considering the new quantity—electric charge).

Magnetic fields can be associated with additional moment forces to electric forces, but
in Newtonian mechanics, moments are derived from forces (no forces, no moments). In
electrodynamics, electric and magnetic fields can exist independently, highlighting the
incompleteness of Newtonian mechanics. Eulerian mechanics addresses these shortcomings.
The kinetic energy of an “elementary” particle in Eulerian mechanics is a quadratic form
of linear and angular velocities with coefficients known as elements of the inertia tensor:

K = 1
2 m

→
V ·

→
V + q

→
V · →ω + 1

2 J
→
ω · →ω, m > 0, m J − q2 > 0, where m is the mass of the

material point, J is the moment of inertia, and q is a new parameter absent in Newtonian

dynamics. The momentum
→
K1 of a point particle is a linear function of its velocities:

→
K1 = ∂ K

∂
→
V

= m
→
V + q

→
ω. The kinetic moment

→
K

Q

2 of a point particle relative to a fixed point Q

in the reference system is
→
K

Q

2 =

(→
R(t)−

→
RQ

)
× ∂K

∂
→
V
+ ∂K

∂
→
ω
=

→
R ×

(
m

→
V + q

→
ω

)
+ q

→
V + 1

2 J
→
ω.

The parameter q in kinetic energy defines a new property of the material point,
referred to as charge. Thus, the dimensionality of an “elementary” particle in Eulerian
mechanics is 10.

Particles can be neutral (without cross elements in the inertia tensor, analogous to
a rigid body with independent translational and rotational movements) or positively and
negatively charged (with cross coefficients in the inertia tensor, involving interactions
between translational and rotational degrees of freedom). Variations in the inertia tensor
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elements, according to Euler’s equations, lead to the emergence of self-consistent mass
forces, and moments are associated with corresponding coherent accelerations. These
features of Euler’s and Maxwell’s equations enable the formalization of the dynamic
self-harmonization variational principle.

System evolution results from varying the structure of connections between system
elements in response to system acceleration. This can either bind free energy in the
structure under external accelerating mass force or release previously stored energy
into the surrounding space. This principle describes the collective properties of systems
experiencing coherent acceleration and transitions to conventional variational principles in
inertial reference frames as coherent acceleration approaches zero (see also [7–10]).

System evolution is governed by particle flows, energy, and coherent accelerations
of all orders (modes with intensification and coherent correlated states), resulting from
external and internal self-consistent mass forces. The system’s connections, inertia, structure,
and geometry evolve to maximize the free movement of all its components (considering
connections), aligning optimally with the system’s natural movements and balancing
energy between coherent and chaotic motions (optimal energy direction). The necessary
principle is derived from the expansion of the general dynamic principle, the Gauss–Hertz
principle [15], to include variable connections and scale invariance. Typically, in mechanical
variation principles, system dynamics optimization occurs with a constant structure, while
thermodynamics of open systems [16] describes phenomena in inertial reference frames,
explicitly excluding binding energy and mass defects.

Section 1.1 Fractal Cluster Model presents a model for describing clusters, and
Section 1.2 Cluster Binding Energy presents relationships for the binding energy of
clusters. Section 1.3 Coherent Acceleration and Mass Forces presents relationships
between the coherent acceleration of a system and the mass forces acting on it. Section 1.4
Non-equilibrium Thermodynamic Relations in Multi-Particle Systems with Connections
presents the basic definitions of thermodynamic quantities in non-equilibrium systems
with connections. Section 1.5 Anisotropic Coherent-Correlated State (CCS) presents the
basic properties of CCS. Section 1.6 Features of Connections in Electrophysics presents
the basic properties of electrophysical systems that arise as a result of the existence
of connections in the system Section 1.7. On the Gauss–Hertz Variational Principle is
devoted to the features of variational principles in systems with connections.

1.1. Fractal Cluster Model

To describe fractal systems, we use the fractal cluster model [1,7], which consists of
a certain number A of monomers characterized by the fractal dimension D f of the internal

structure and the binding energy BA

(
D f

)
of the clusters. Any of the possible types of

dimensions (see, for example, [1–3]) can be considered as a fractal dimension, but the fractal
dimension of connections in a complex system is mainly used.

Fractals exhibit a power-law dependence of the angularly averaged correlation function
on the distance to their geometric center. The average particle density ρ(r) in a cluster
changes with distance from the center within the cluster according to the law of spatial
correlation decay: ρ(r) = ρm(lm/r)3−D f , A ∝ (RA/lm)

D f , RA = lm A1/D f , where ρ is the
density of monomers forming the fractal structure.

Thus, the fractal dimension of the cluster D f and its average density ρ are functions of
the mass number Am and the density ρm of monomers, and [1,17]

D f = 3
ln(A/Am)

ln(A/Am) + ln(ρm/ρ)
, ρ = ρm

(
Am

A

) 3−D f
D f

(1)
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From this follows the dependence of the ratio of the density of the fractal cluster and
the density of the monomer ρ/ρm on the fractal dimension D f and the ratio A/Am in
the form

ρ

ρm
= exp

(
−
(

3
D f

− 1

)
ln(A/Am)

)
(2)

This dependence is shown in Figure 1. This dependence is in the form of several curves
for different values of the ratio A/Am.
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Figure 1. Dependence of the logarithm of the density ratio ρ/ρm on the fractal dimension D f for
a fixed value of the ratio of the number of particles in the system to the number of particles in the
monomer A/Am. Four curves: A/Am = 10−7, A/Am = 10−5, A/Am = 10−3, A/Am = 1 (from top
to bottom).

1.2. Cluster Binding Energy

For describing the binding energy of fractal clusters, we account for surface energy,
Coulomb energy, kinetic energy of the electronic component, and interaction energy of cluster
elements, approximated by the Lennard-Jones potential: U(r) = ε0

(
(rmin/r)12 − 2(rmin/r)6

)
.

This potential corresponds to attraction at sufficiently large distances r >> rmin and
sharp repulsion at small distances r << rmin. Such interactions ensure the integrity
of the molecular system with characteristic inter-element distances rmin and a positive
binding energy on the order of ε0. The total volumetric binding energy Bv of the system is
determined by the integral Bv =

∫
U(r − r′)ρ(r)ρ(r′)d3rd3r′.

Due to sharp repulsion at short distances, it is proportional not to the square but to
the first power of the number of elements A in the system. As density increases, corrections
due to the non-ideality of the particle system grow, and we can write Bv ≈ g0 A + a0ρ2/3 A,
g0 ≈ ε0 [8].

Bclaster

(
A, Z, D f

)
=

(
c0 − c3

(
1 − 2Z

A

)2
)

A − c1 A2/3 − c2
Z2

A1/3 − cel

(
Z
A

)4/3
, (3)

c0 = g0 +
a0ρ2/3

m

22/3

(
Am

A

)2
3
(3 − D f )

D f c3 = −5a0ρ2/3
m

21/39

(
Am

A

)2
3
(3 − D f )

D f , c1 = 4πσl2
m

(
A

Am

) 2
D f ,

c2 =
3
5

e2Z2

lm

(
Am

A

) 1
D f , cel =

3
4

aε

ρ4/3
m

(
Am

A

)4
3

3 − D f

D f

.
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1.3. Coherent Acceleration and Mass Forces

Anisotropy and violation of the inertial reference frame are always due to corresponding
coherent accelerations (see [18,19]), not mass velocities, since the motion of the system at
a constant speed, according to Galileo’s principle of relativity, does not change its physical
properties (including internal structure). Therefore, structural changes indicate that the
system is in a non-inertial reference frame and is non-equilibrium (see [7–10]). Variations in
coherent acceleration and anisotropy can manage the evolution of energy direction within
the system.

The concept of self-harmonizing synthesis is based on the general notions of system
structures and the understanding that dynamic systems of any nature are not static but
“living” entities with purposeful “behavior,” whose existence is inherently linked to their
evolution. All observed diversity of dynamic systems with various structures is the product
of evolution, searching for an optimal system structure providing maximum stability in
given circumstances and thus the greatest chances of survival under external influences by
improving their internal structure.

This evolutionary approach is somewhat akin to stress theory in biology [20], emphasizing
the “creative” potential of external system disturbances in areas of its highest sensitivity. In

mechanics, the action of mass impulse forces
→
F m on a particle system causes acceleration

of the entire system as a whole, determined by: Msys(S) d
dt

(→
u
)

=
→
F m +

→
F S, where

→
u

is the speed of the entire system,
→
a m = d

dt

(→
u
)

is coherent acceleration,
→
F S = Msys

→
a S

is self-consistent force,
→
a S = 1

mS
(−σS)

→
u , 1

M0

d Msys(S)
dt = − 1

ms
(−σS) is self-consistent

acceleration, σS = dS
dt is the entropy production in the system, and mS = M0c2

(
− dS

dB

)
is the system’s structural inertia. As seen, the force

→
F S resembles “viscosity,” expressed

through entropy and referred to as the entropic force. There is a direct relationship between
total mass coherent acceleration

→
a m and negative entropy production (−σS):

→
a m =

→
a 0 +

1
mS

(−σS)
→
u ,

→
a 0 =

→
F
m

. (4)

1.4. Non-Equilibrium Thermodynamic Relations in Multi-Particle Systems with Connections

The presence of internal connections and their variability distinguishes a multi-particle
system from a simple particle ensemble. Collective properties of multi-particle systems
are described using statistical, kinetic theories, and thermodynamics. Non-equilibrium
thermodynamics and phase transition theory [21–23] exemplify the evolution of the
internal structure of hierarchical systems. Thermodynamics of hierarchical systems with
scale invariance can be constructed on non-additive generalizations of logarithms and

exponents lnq(x) = x1−q−1
1−q , expq(x) = (1 − (1 − q)x)

1
1−q (see Figure 2), such as in Tsallis

entropy [24–27]:

Sq(pi) = −
N

∑
i=1

pi lnq pi = −

N
∑

i=1
p2−q

i − 1

1 − q
(5)

With the main consequence of such a replacement with the non-equilibrium parameter
q is that the entropy of the total system differs from the sum of the entropies of the system
parts by a value Sq(A + B), which can either increase or decrease compared to the initial
equilibrium value Sq(A) + Sq(B), depending on the parameter q. Variations in the system’s
structure and its fractal dimension are accompanied by changes in system memory, making
its dynamics and thermodynamics non-local [26,27].
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In this context, the binding energy B = B
(
Sq
)

depends on the system’s entropy and

the fractal dimension D f of its structure. Thus, the mass defect δm
(
Sq
)
=

B
(
Sq
)

c2 is found
to depend on the information “recorded” in the system’s structure

Msys
(
Sq(t)

)
= M0 − δm

(
Sq(t)

)
(6)

Already in the non-equilibrium thermodynamics of hierarchical systems, the key
physical features that distinguish the synthesis and evolution of a particle system from its
dynamics manifest:

• Openness of evolving systems, i.e., systems with variable connections.
• Anisotropy, reflecting coherent acceleration as an action of mass forces. Modes with

intensification and coherent correlated states (CCS).
• Hierarchy, fractality, and multi-scalability of evolving hierarchical systems [26,27].

Non-locality and memory in an evolving system reflect the potential predictability
based on the inertia of both the system’s dynamics and its physical characteristics.

• Simultaneous evolution of the system’s structure and the “goal” of the evolution itself.

1.5. Anisotropic Coherent-Correlated State (CCS)

To achieve effective synthesis and optimal variation in connections, the system must
be in a specific critical, anisotropic, coherent-correlated state (CCS). The concept of coherent-
correlated states is discussed in [28] and more recent works [29,30]. In such critical states,
evolution occurs not merely in coordinate space (as the system practically represents
a single entity) but across levels of a certain hierarchy.

Within each hierarchical level, evolution qualitatively differs in two orthogonal
directions: along the coherent acceleration (the direction of characteristic scale reduction
and coherence) and in the orthogonal surface to this direction, where characteristic scales
increase, and coherent structures with high correlations grow. Thus, the evolving system
represents a collective state with properties of saddle point attractor—system trajectories
converge in the direction of acceleration and diverge in the orthogonal direction.

CCS properties are primarily reflected in two relationships: the deformation of the
ellipsoid of methods characteristic scales of the coherent system’s base space and the ratio of
the volumes of the base space to the first tangent bundle, i.e., the uncertainty relationships
of the coherent system.

1.6. Features of Connections in Electrophysics

When transitioning from mechanical to electrophysical systems, it is necessary to
consider the characteristics of parallel and sequential circuits and analogies between
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mechanical and electrical characteristics of particle systems and simple electrical systems
(circuits) (see [31,32]). Essential information about these analogies is provided in Table 1.

Table 1. Electromechanical analogies.

Mechanical System Dynamics Electrophysical System Dynamics

Coordinate in space, m: x Electrophysical coordinate—charge, Coulomb: Q

Speed of change in coordinate: m/sec u = dx
dt Rate of change in coordinate, Coulomb/sec = Ampere: I = dQ

dt

Tangent spaces with coordinates velocity u (or momentum p)

and spaces of accelerations of all orders dnucog
dtn and control

parameters: dn+1ucog

dtn+1 , n = 1, 2 . . .

Tangent spaces with coordinates current I (or flux Φ) and spaces
of accelerations of all orders dn I

dtn and control parameters: dn+1 I
dtn+1 ,

n = 1, 2 . . .

Particle system in an inertial frame. Transition to another frame
of reference—adding the same speed to all particles
Mass, inertia of a separate i-th particle of the system, kg
miµ

−1
e f f = ∑

i
m−1

i ,

µe f f —reduced mass, effective inertia of a particle representing
the dynamics of the entire system with constant connections

Parallel Current System. Transition to another frame of
reference—adding a parallel current to the original parallel
current system
Inductance, inertia of the field of the i-th current in the current
system, Henry, Li
L−1

e f f = ∑
i

L−1
i , Le f f —inductance, inertia of one current

representing the dynamics of the entire system of parallel
currents with constant connections

Momentum p = mu, kinetic energy: Wk =
p2

2m
The proper moment of inertia of a particle

Field induction flux Φ = LI, Weber, magnetic field energy
WΦ = Φ2

2L
Particle spin

Action, J*sec S = δpδx Action, Weber* Coulomb S = (δΦ)(δQ) = L(δI)(δQ)

Impedance (dimension kg/sec = (J sec)/m2), the rate of change
in the inertia of a system of particles or the anisotropy of the
phase space: Z =

δp
δx = δS

(δx)2

Impedance (Henry/sec = (Weber Coulomb)/Coulomb2), rate of
change in inertia of a field system or phase space anisotropy:
Z = δΦ

δQ =
L(δI)

δQ = δS
(δQ)2

Force: F = d
dt p Potential difference U = d

dt Φ

Elastic force resulting from a change in coordinate:

Fde f = −kde f x, Potential elastic energy Wde f =
kde f x2

2

Potential difference resulting from charge change: UC = − 1
C Q,

kde f =
1
C ,

Potential electrical energy WQ = Q2

2C

Particle system
Transition to another inertial frame of reference of particles:
increase in all velocities of the system by the velocity of relative
motion of the systems.

Parallel Current System Changing the reference system is
adding a current to the current system, i.e., adding a new
branch of current to the current system.

Particle inertia defect: δm = −(m − m0)
momentum of a charged particle in an EM field and its mass
defect:
p = mu = m0u − δmu, pA = m0u + qA, δm ≈ (−q/u)A

Defect of inductance, field inertia δL = −(L − L0)
Flux of electromagnetic field induction and inductance defect
Φ = LI = (L0 − δL)I = p0 − (δL)I

The equation of dynamics of a system of particles under the

action of mass force
→
F m and variation in coupling in a turbulent

medium:
m(S) d

dt

(→
u
)
=

→
F m +

→
F B +

→
F turb +

→
F S,

→
F B = −kB

→
x ,

→
F turb = −νturb

→
u ,

→
F S = − dm(S)

dt
→
u .

The turbulent medium is represented by fractal dynamics with

negative viscosity νturb and self-consistent entropic force
→
F S

acting from the medium, taking into account variations
in structures.

The equation of the dynamics of a current element in a system
of currents under the action of an impulse with changing
connections and a changing, turbulent ether:
L(S) dI

dt = Um + UB + Frad + US, where UB = − 1
C Q,

Frad = −Rturb I, US = − d(δL(S))
dt I.

Vacuum turbulence is represented by a fractal dynamic of
fluctuations with negative resistance and self-consistent
entropic EMF US acting from the vacuum side, taking into
account the variation in structures.

The anisotropies of the base space and the tangent bundle are
related by the uncertainty relation, taking into account the
impedance Z and coherent acceleration relative to the medium:
Z∥, Z⊥, l∥, l⊥.

The anisotropies of the basic electrophysical space and the
tangent bundle are related by the uncertainty relation, taking
into account the impedance Z and coherent acceleration relative
to the vacuum: Z∥, Z⊥, l∥, l⊥.
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It is shown in [18] that sequential consideration of connections in an electrodynamic
system requires moving beyond flat space–time. The central theorem proven in [18]
states that transitioning to a rigid globally uniformly accelerated reference frame results
in space–time curve, with its metric and curvature κ determined by the mass force or
coherent acceleration acog acting on the system. A significant practical consequence of
electrodynamics of systems with connections is that elements of electrophysical circuits
become nonlinear. For example, the capacitance of capacitors depends on the potential
difference across them, and the inductance of conductors depends on the currents flowing
through them. The capacitance of a capacitor with a gap d between the electrodes with
an area S in linear electrodynamics has the form C0 = S

4πd and does not depend on the
applied potential.

Coherent acceleration of the system leads to the appearance of space–time curve κ and
the dependence of capacitance and inductance on κ:

C(κ)
C0

=

(
κ
2
)1/2d

1 − expq

(
−
(

κ
2
)1/2d

) ,
L(κ)
L0

≈ I0

((κ

2

)1/2
ρw

)
K0

((κ

2

)1/2
ρw

)
, κ ≈ 2

a2
cog(

c/
√

ε
)4 ≈ κ0ε2 (7)

where the dependence of inductance on curvature is given for a thin cylindrical wire of
length lw and radius ρw, and the dependence of capacitance is for the flat case, κ0 is the
curvature in a vacuum, ε is the permittivity of the medium, I0 and K0 are modified Bessel
functions (see [33]). For small curvature, the following ratio can be used for capacity C(κ) ≈
C0

(
1 + 1

2
(

κ
2
)1/2d

)
. For dielectrics with an internal fractal cluster structure, the effective

area Se f f depends on the fractal dimension D f of the cluster structure of the capacitance and
the ratio of the mass numbers of clusters Acl and monomers Amono from which the clusters

are constructed: Se f f = S0kD f , kD f =
(

Acl
Amono

)2/D f −2/3
. For fractal clusters, the dimension

is related to the order parameter by the relations η ≈
(

3 − D f

)
/
(

D f − 1
)

, D f (η) =

(3 + η)/(1 + η), which follow from the virial theorem [34,35]. Thus, the dependence of the
capacity on the order parameter can be represented as follows:

C(η) ≈ C0
S(η)

S0

(
1 +

1
2

(
κ(η)

2

)1/2
d

)
≈ C0

(
1 +

1
2

(
κ(η)

2

)1/2
d

)(
Acl

Amono

) 1+η
3+η −

2
3

(8)

The pulse action Up(t) on an electrophysical system with internal connections (structure)
leads to the appearance of coherent acceleration of the entire system, and when the
threshold determined by thermal fluctuations is exceeded, the system becomes nonlinear,
and the dependence of the capacitance C on the applied pulse action appears [18] in
accordance with the relation

C
(
Up
)

C0
=

(
eUp/

(
mec2))1/2

1 − expq

(
−
(
eUp/(mec2)

)1/2
) (9)

where C0 is the capacitance without taking into account the variation in connections. Figure 3
shows the dependence of capacitance on the applied voltage and parameter q.

Thus, circuits with fractal elements under pulse action become fundamentally nonlinear
and non-stationary, and to describe their evolution, there are not enough equations of the
dynamics of the system structure, its fractal dimension, and order parameter.

One of the ways to solve this problem is to use variational principles that are valid for
these cases.
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1.7. On the Gauss–Hertz Variational Principle

The Gauss–Hertz principle (principle of least constraint) asserts that the positions
points in a system will occupy at a given time t + dt in actual motion are distinguished
among all possible positions allowed by constraints by the minimum value of the constraint

measure: ZG =
N
∑

i=1
mis2

i (here si is the length of the vector between the points representing

the true and any possible position of the point). This principle is mechanically analogous
to the least squares method, fundamental to all statistical research: “free movement, if it
cannot occur under the given conditions, is modified by nature in exactly the same way as
a calculating mathematician, using the least squares method, aligns experimental results
related to values by some dependency” [36].

Substituting the real acceleration
→
a i(t) at time t with the varied acceleration

→
a
∗
i =

→
a i(t) + δ

→
a i(t) results in a change in deviation of particles from the real trajectory is

si(t + τ) = ri(t + τ)− ri(t) = ui(t)τ + 1
2 a∗i (t)τ

2 + . . . The Gauss principle requires specific
trajectory variation where positions ri(t) and velocities ui(t) of all particles at a given
moment are fixed, varying only accelerations while maintaining all constraints. Assuming
τ is small to the second order, we obtain si(t + τ) = 1

2 δai(t)τ2, δai = a∗i −
Fi
mi

.

2. Variational Principle of Evolution in Systems with Internal Structure

Variational principles in particle dynamics were initially developed for mechanical
systems with fixed internal structures. Expanding these principles to electrophysical
systems and their internal structure evolution requires two clear steps:

• First, to clearly indicate the analogies of inertia and connections in mechanics and
electrophysics, which are already given in Table 1.

• Second, to consider the evolutionary principles of dynamic systems not only under
variations in kinematic parameters (accelerations in configuration space) but also
under variations in inertia, structure, impedance, and connection energy within
the system.

2.1. On the Extension of the Gauss–Hertz Principle

We proceed to describe the variational principle of evolution in complex systems with
variable connections and structures (specifically, to obtain a complete system of equations
for an electrophysical circuit and its structure). As Vlasov demonstrated in his non-local
statistical mechanics [37–39], such systems should be described in Cartan space, consisting
of a Riemannian base space with tangent planes of all orders at every point of the base
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space. The principle of evolution, as an extension of the Gauss–Hertz principle, consists of
minimizing the extended constraint function with respect to higher-order accelerations

ZG =
N

∑
i=1

mi

(
D f

)
s2

i

(
a(1)i (t), a(2)i (t), a(3)i (t), . . . , a(n)i

)
(10)

and, accordingly, the evolving constraint function, connections, and inertia. This variational
principle, with variations in connections and inertia, provides not only the dynamic
equations of the system but also the equations of its structural evolution.

For mechanical particle systems (with space dimension n in generalized coordinates)
exhibiting self-similarity and fractal dimension D f , the principle can be formulated as
follows: under the action of external and mass forces Fi + Fm (where Fi is the force acting
on the i-th particle and Fm is the mass force acting uniformly on all system particles),
the system alters its trajectory and structure (fractal dimension D f or order parameter
η) to maintain harmony with the external environment and influences by minimizing
the quadratic Gauss constraint function ZG, modified to account for variations in inertia
mi

(
D f

)
= m0 − BA

(
D f

)
/c2, which depend on the structure, i.e., on D f :

ZG =
n

∑
i=1

(
mi

(
D f

)
ai − (Fi + Fm)

)2
(11)

taking into account all connections gk in the system.
As Vlasov demonstrated in his non-local statistical mechanics [38,39], such systems

should be described in Cartan space, consisting of a Riemannian base space with tangent
planes of all orders at every point of the base space.

The principle of evolution, as an extension of the Gauss–Hertz principle, consists of
minimizing the extended constraint function

ZG =
N

∑
i=1

mi

(
D f

)
s2

i

(
a(1)i (t), a(2)i (t), a(3)i (t), . . . , a(n)i

)
(12)

with respect to higher-order accelerations and, accordingly, the evolving constraint function,
connections, and inertia. This variational principle with variations in connections and
inertia provides not only the dynamic equations of the system but also the equations of its
structural evolution. This takes into account all connections in the system. In other words,
the system strives to make the trajectories of its forced motion and the evolution of its
internal structure under mass forces as close as possible to the trajectories of its natural,
undisturbed motion. The property of minimizing the quadratic function ZG considering
the connections with fixed positions and velocities of all particles leads to differential
equations for the variables determining the system’s state and internal structure (after
variation in accelerations), which differ from ordinary dynamic equations and refine particle
dynamics through the actions of the connections, specified using the system’s generalized
coordinates. A feature of the Gauss principle of least constraint is the specific variation
in the trajectory, achieved by varying only the accelerations while fixing the positions
and velocities of the particles. That is, at a given time t, the positions ri(t) and velocities
ui(t) of all particles are set, and we can control the accelerations without violating the
given connections. It should be noted that the Gauss variation method aligns well with the
main principles of A. A. Vlasov’s non-local statistical mechanics [37–39]. In this non-local
theory, a particle is represented not as a point in Euclidean space but as the coordinates
of the particle on the trajectory along with all its kinematic variables. In other words,
a Vlasov particle is represented by its coordinate on its trajectory and the tangent planes
of all orders to the trajectory at this point, i.e., a particle is represented not as a point
in Euclidean or Riemannian space but as a point in Cartan space. Gauss variations thus
appear as variations in the second-order tangent plane, fixing the first-order tangent
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plane. Replacing the actual acceleration of each particle
→
a i(t) at time t with

→
a
∗
i =

→
a i(t) +

δ
→
a i(t) leads to a change in particle positions over time t, which can be represented by

a Taylor series: ri(t + τ) = ri(t) + ui(t)τ + 1
2 a∗i (t)τ

2 + . . . Using this series, we express
the deviation of the particles from the real trajectory as si(t + τ) = ri(t + τ) − ri(t) =
ui(t)τ + 1

2 a∗i (t)τ
2 + . . . Given that we have fixed the initial coordinates and velocities

of the system particles, linear variations in τ equal zero, and considering small to the
second order, we obtain si(t + τ) = 1

2 δai(t)τ2, δai = a∗i −
Fi
mi

. Now, let the multi-particle
system be subjected to mass forces Fmz and moments Mmz, so that all particles are in
a non-inertial reference frame with some coherent axial accelerations

→
a cog = az along axis

z and rotational accelerations ϑ(t) ≡ ϑz(t) around axis z, coinciding with the direction of
coherent acceleration and mass force action. This general picture of collective, coherent
motions corresponds to the system’s 3-dimensional space being represented as the product
of two subspaces: one-dimensional (along axial acceleration) and an orthogonal surface
with coherent acceleration, containing rotational motions around the axis (direction of
acceleration). Conditions for optimizing the system’s rotational motion around a certain
axis z can be derived analogously to the optimization of axial motion. At a given moment
t, the rotation angle φ(t) and angular velocity ω(t) of the system is set, while angular
accelerations can be varied without violating the given connections. Then the change in
angle is ψ(t + τ) = φ(t + τ)− φ(t) = ω(t)τ + 1

2 ϑ(t)τ2 + . . . Replacing the actual angular
acceleration ϑ(t) at time t by ϑ∗(t) = ϑ(t) + δϑ(t), considering zero variations in coherent
angular velocities and angles, leads to the relation ψ(t + τ) = 1

2 δϑ(t)τ2. Hence, for the
displacement between the actual rotational position and any possible system position,
sφ(t + τ) = l⊥ψ(t + τ) = 1

2 l⊥δϑ(t)τ2, δϑ(t) = ϑ∗(t)− Mmz
Iz

.
For coherent axial motions, the relationships defining the corresponding displacements

are similar. Anisotropy of space reflects that both base spaces and tangent spaces are
represented as the direct product of one-dimensional space along the direction of acceleration
and an orthogonal surface.

Thus, axial motion decomposes into two components, longitudinal and orthogonal,
and the displacements of the varied motion from the real motion are similarly decomposed:
sz(t + τ) = 1

2 δaz(t)τ2, δaz = a∗z − Fmz
me f f

. s⊥(t + τ) = 1
2 δa⊥(t)τ2, δa⊥ = a∗⊥ − Fm⊥

me f f
. These

relationships do not depend on the type of connections, which are only considered

when choosing variations δai(t) and δ
→
ϑ i(t). Importantly, in Gauss variation (due to fixed

velocities), variations in accelerations δ
→
a
∗
i and δ

→
ϑ
∗
(t) are determined by equations similar

to those for virtual displacements δri and δφ(t), respectively.
Using expressions for displacements and rotations of both individual particles and the

entire system over a small-time interval ∆t (according to the definition of the constraint
measure ZG), we can obtain an expression for the total function, whose optimization yields
the particle dynamics and the evolution of system structure parameters. This function can
be called the dynamic self-harmonization function—an extended constraint function ZG,
and represented as the sum of two contributions

Zdsh

({→
a
∗
i

}N

i=1
, az, a⊥, ϑz

)
= ZGaussN

({→
a
∗
i

}N

i=1

)
+ Zcog(az, a⊥, ϑz) (13)

where:

• The first contribution ZGaussN

({→
a
∗
i

}N

i=1

)
=

N
∑

i=1
mis2

i =
N
∑

i=1
mi

(
(∆t)2

2

(
mi

→
a
∗
i −

→
F i

))2

=
N
∑

i=1
Ki

(
mi

→
a
∗
i −

→
F i

)2
, Ki = mi

(∆t)4

4 represents the dynamics of all particles in the

ensemble without considering coherence.
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• The second contribution Zcog(az, a⊥, ϑz) = Kz(mza∗z − Fmz)
2 + K⊥

(
m⊥a∗⊥ − Fm⊥

)2
+

Kω(Izϑ∗
z − Mmz)

2, Kz = mz
(∆t)4

4 , Kω = l2
⊥0me f f

(∆t)4

4 , represents the coherent dynamics
of the system as a whole.

Unconditional minimization of the quadratic function ZGaussN

({→
a
∗
i

}N

i=1

)
with respect

to the accelerations of all particles leads to ideal Newtonian equations: mi
→
a
∗
i −

→
F i = 0.

Usually, connection conditions for particles are given as functional relationships between
the coordinates of particles within the system. Optimization of the same function

ZGaussN

({→
a
∗
i

}N

i=1

)
considering the connection conditions leads to the real dynamic

equations of the system N particles.
Connection conditions for the collective state of the system (for optimizing the function

Zcog(az, a⊥, ϑz)) appear as relationships between the system’s spatial scales at the lower
evolutionary level and the parameters of the system’s internal structure. Optimizing the
harmonization function Zcog(az, a⊥, ϑz) with respect to the accelerations of the system’s
characteristic scales at this lower evolutionary level with the given connection conditions
allows obtaining second-order evolution equations for the internal structure parameters. The
second order of equations is the minimum order for evolution equations and is related
to the fact that synthesis is governed by minimum-order accelerations. The second order
of evolution equations physically means that even at the first hierarchical level (the first
evolutionary horizon with minimal memory), the structure parameters and probability
distribution acquire their own inertia (structural inertia).

2.2. On the Functional of Dynamic Self-Harmonization in the Variational Principle of Evolution

Self-consistent entropic forces and moments initiated by initial mass forces reflect
positive feedback in open systems, leading to increased accelerations and, consequently,
to greater influence on the evolution of dynamics in higher-order tangent bundles. This
explosive mechanism ensures modes with intensification and a finite transition time of

The growth of hierarchical structure and the increase in the total dimension of the
system’s evolutionary space and the order of the evolutionary horizon (order of the tangent
bundle) reflect the binary property of evolution, i.e., the variation in connections occurs
together with the variation in the dynamic harmonization function Zdsh itself, approaching
the dynamic harmonization functional Φdsh, which governs evolution in the complete
Cartan space at all hierarchical levels.

To form the dynamic self-harmonization functional for the evolution of a system
with variable connections, it is necessary to consider that the number of quadratic terms
in the functional corresponds to the number of tangent bundles in Cartan space and
tends towards infinity. The functional obtained by such an extension of the Gauss–Hertz
constraint function is called the Gauss–Hertz dynamic self-harmonization functional. This
functional describes the variations in the volumes of phase spaces of all orders due to axial
accelerations and accelerations in the corresponding orthogonal surfaces of the tangent
bundles in the Cartan space.

The structure of all quadratic contributions is determined by the Vlasov equation
system (see [37–39]) for collective accelerations in Cartan space. To generally record the
functional, it is necessary to introduce the acceleration order as a variable parameter
corresponding to the tangent space and to write the macroscopic dynamic equations for
collective accelerations using this parameter:

d2
〈→

u
〉

dt2 −→
a a = 0 (14)
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where
→
a a

(
Sq,

→
u ,

→
a
)
=

(
−(2σS + νa)

d
〈→

u
〉

dt −
(

dσS
dt + σ2

S + νaσS

)
+
〈→

u
〉

1
m

→
F a

(
t,
→
r ,

→
u ,

→
a , f
))

.

Φdsh(aa0, a⊥0,...,aai, a⊥i, . . . .) =
∞

∑
i=1

Ki

((
aai −

1
mai

Fai

)2
+

(
a⊥i −

1
m⊥i

F⊥i

)2
)

(15)

where aai =
di⟨ua(Sq)⟩

dti , Ki ≈
me f f

4

(
τe f f i

)2i+2
.

The increasing number of tangent bundles corresponds to the growing number of scales in
the system, and the dynamics of these scales reflect the evolution of multi-scale hierarchical
structures (in a sufficiently general case, cluster structures), which are a convenient and
natural model for the evolution of the connection structure in complex systems.

Cluster hierarchical structure theory is reviewed in general form in [27], and transition
laws from one hierarchical structure level to the next are derived. This theory does not
depend on the nature of hierarchical levels but depends on the main properties of clusters
and is applicable in the current case if the hierarchy number in cluster structures is
identified with the acceleration order number in the corresponding tangent bundles of the
Cartan space of the system (the order of contact of the layer with the velocity space) to
which the system’s non-equilibrium state has advanced. Non-equilibrium starts forming
in the base space and the first-order tangent space (the energy space in the isotropic case),
while evolution control is performed in the first-order acceleration space (i.e., within the
framework of collective dynamics, closest to classical particle dynamics). In this case, the
least information about the system is used, and averaging is performed over the largest
number of dynamic variables (accelerations). From this rough level, control begins, and the
complete dynamic self-harmonization functional in the acceleration space narrows to the
dynamic harmonization function in the acceleration space.

First, evolution occurs within the acceleration space at one hierarchical level to which
evolution has progressed (at the corresponding evolutionary horizon). This evolution
is governed by the dynamic self-harmonization functional, narrowed to the extended
Gauss–Hertz dynamic self-harmonization function governing evolution at this level according
to equations derived from minimizing this function over the relaxation time interval at
this level until transitioning to the next evolutionary horizon. The wave of evolution then
spreads further to the next evolutionary horizon and to the next tangent space, where
a non-equilibrium quasi-stationary state begins to form, whose evolution leads again to the
expansion of the evolutionary horizon and the transition to the next hierarchical level.

3. Evolution Equations for Systems with Variable Connections and Fractal
Structure Dynamics

To derive the differential motion equations from the principle of evolution in open
systems with connections, it is necessary to specify the connection equations in the system.
In mechanics, connections are typically given as necessary to specify the connection
equations in the system. In mechanics, connections are typically given as relationships
between the coordinates of the system’s parts. In such cases, their use does not pose
particular difficulties, as the system’s inertia does not change over time and is simply
determined by its constant mass. In cases of evolving systems with changing connections
and internal structures, not only do the coordinates in the system’s configuration space
vary, but also the physical quantities such as correlations, various dimension indices,
probabilities, etc., for which the concept of inertia is not obvious, resulting in natural
difficulties in describing the system’s dynamics.

In general, the connections in the system are determined by the relationships between
the external geometric scales of the system and those parameters that characterize the
internal structure of the system and the connections within the system. Such relationships
for physical systems in a state of evolution, i.e., in critical states of phase transitions with
scale invariance, are as follows:
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1. Relationships between the external longitudinal la and transverse l⊥ sizes of a cluster,
the cluster’s volume, the number of particles in the cluster N, and the fractal dimension
D f ;

2. Uncertainty relationships between the characteristic spatial scales la, l⊥ of the
configuration space and the characteristic velocities in the longitudinal ⟨u⟩a and
transverse directions ⟨u⟩⊥ of the energy space of the system for collective coherent-
correlated states and relationships for the deformation of the corresponding subspaces;

3. Characteristics of the longitudinal and transverse components qa, q⊥ of the energy
space structure, respectively.

Consider a system of N particles homogeneous in one spatial direction with a charac-
teristic size la in this direction. This could be a particle system in the form of a cluster
with a maximum external radius RN . We characterize the system’s internal structure in the
coordinate space by its fractal dimension D f (or other fractional dimensions characterizing

correlations and connections in the system) with a binding energy B = B
(

N, D f

)
. The

connections in the system’s coordinate space are then given by functions RN = ψ1

(
N, D f , la

)
,

la = ψ2

(
N, D f , RN

)
.

The binding energy and characteristic sizes of the system is used when varying axial
acceleration and rotational acceleration. Additional connection conditions are necessary for
varying accelerations in the tangent bundle. These connections can be obtained from the
analysis of the system’s non-equilibrium thermodynamics, introducing a non-equilibrium
parameter for the longitudinal and transverse directions qa, q⊥. In general form, the
connection equations for the tangent bundle become ⟨u⟩a = ψa(N, η, qa, Wa), ⟨u⟩⊥ =
ψ⊥(N, η, q⊥, W⊥). Here, besides the non-equilibrium parameters, the order parameter
and corresponding energies act as parameters. The uncertainty relationships considering
the system’s collective properties provide additional connection conditions: ⟨u⟩ala =
∆Sq(N, qa, η, Wa), ⟨u⟩⊥l⊥ = ∆Sq(N, q⊥, η, W⊥).

To derive the differential motion equations from the principle of dynamic self-
harmonization in open systems with connections, it is necessary to specify the connection
equations in the system. In mechanics, connections are typically given as relationships
between the coordinates of the system’s parts. In such cases, their use does not pose
particular difficulties, as the system’s inertia does not change over time and is simply
determined by its constant mass. In cases of evolving systems with changing connections
and internal structures, the system’s coordinates, along with the usual coordinates in
the system’s configuration space, include physical quantities such as correlations, various
dimension indices, etc. The concept of inertia and its values for quantities characterizing the
system’s internal structure is not obvious, resulting in difficulties in applying the evolution
principle. In general, the connections in the system are determined by relationships linking
the system’s external geometric scales with the parameters characterizing the system’s
internal structure and the magnitude of connections within the system. For fractal clusters,
such relationships include the relationship between the cluster’s external sizes and fractal
dimension, as well as the relationships between the cluster’s volume and its properties as
a statistical object or the uncertainty relationships for the coherent state.

Consider a system of A particles homogeneous in one spatial direction, with the
characteristic sizes of the system in the remaining two directions denoted by the collective
variables RA and dA. This could be a particle system in the form of a cluster with an external
radius RA. We characterize the system’s internal structure by its fractal dimension D f (or
other fractional dimensions characterizing correlations and connections in the system),
and then the connections in the system are given by the function: RA = ψ1

(
A, D f

)
. We

express the system’s binding energy as a function of these same variables: B = B
(

A, D f

)
,

δm =
B(A,D f )

c2 . In the final equations, it is convenient to use dimensionless variables, mass
µ = msys/m, radius, and time, normalized to the cluster’s initial radius r = RA/RA0,
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its initial mass m = Amp, and the light travel time of the initial cluster radius RA0 =

RA

(
A(t = 0), D f (t = 0)

)
= r0 A0

1/D f 0 . Forces are normalized by f0 = A0mpc2/RA0.
According to the principle of dynamic harmonization, the system’s motion equations
are determined by minimizing the constraint function: ZG = msyst

(
msystwr − Fr

)2, msyst =(
Amp − δm

)
. The existence of a connection in the system means that the acceleration wr is

not arbitrary but determined by this relationship. Differentiating the connection equations
twice with respect to time, considering that only the acceleration varies, we obtain a linear
relationship between the spatial variable derivatives and the derivative characterizing the
acceleration of the structure parameters (e.g., fractal dimension):

wr =
d2

dt2 RA ≈ RA0

∂2ψ1

(
A, D f

)
∂D2

f

d2D f

dt2 = γ1η RA0
d2D f

dt2 , γ1η =
∂2ψ1

(
A, D f

)
∂D2

f
(16)

Substituting the obtained expression wr = wr

( ..
D f ,

..
A
)

into Zdsh, we obtsin the Gauss

constraint function ZG = ZG

( ..
D f ,

..
A
)

depending on the acceleration of the fractal dimension
parameter (structure parameters acceleration) and the system’s mass acceleration:

Zdsh = mnuc(mnucwr − Fr)
2 = mnuc

(
mnuc ψD f

..
D f − Fr

)2
(17)

The condition for minimizing the constraint function with respect to the acceleration
..
D f :

∂ZG

( ..
D f ,

..
A
)

∂
..
D f

= 0, leads to the differential equation for the fractal dimension of the cluster

system: mnucγ1η RA0
..
D f = Fr. For a fractal cluster RA

(
A, D f

)
= r0 A

1
D f = RA0

A
1

D f

A0

1
D f 0

and A = A0, we obtain γ1η

(
A, D f

)
=

log(A)

D3
f

(
2 + log(A)

D f

)
A(1/D f −1/D f 0), from which the

equation for the fractal dimension in the form

µnuc

(
A, D f

) ..
D f =

1

γ1η

(
A, D f

) fr (18)

Here, the notations are introduced:

µnuc

(
A, D f

)
=

1 −
B
(

A, D f

)
A mpc2

 ≈ 1, fr = Fr/ f0 (19)

If we assume µnuc

(
A, D f

)
≈ const, then the equation can be brought to the form

d
dt

(
µnuc

2

( .
D f

)2
+ Ustr

(
D f

))
= 0, Ustr

(
A, D f

)
= − fr

∫ dD f

γ1η

(
A, D f

) (20)

Calculating the integral, we obtain

Ustr = − A(1/D f 0−1/D f )

32 log(A)
(G1 − G2) fr (21)

where
G1 = 4D4

f − 4 log(A)D3
f + 4 log2(A)D2

f − 6 log3(A)D f ,

G2 = A1/D f log4(A)
(

7Ei
(
− log(A)

D f

)
− e2Ei

(
−2 − log(A)

D f

))
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Here, Ei(z) = −
∞∫
−z

dt
exp(−t)

t
is the integral exponent. Figure 4 shows the surface representing

the function Ustr

(
A, D f

)
.
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Figure 4. The surface of the potential energy of the structure depends on the fractal dimension of the
cluster and the number of particles.

Thus, the approximate first integral, determined by the dimensionless total system
energy, is as follows:

µnuc

2

( .
D f

)2
+ Ustr

(
A, D f

)
= W0, W0 =

µnucu2
D f 0

2
+ Ustr

(
A, D f 0

)
(22)

leads to
D f 0∫

D f

(
u2

D f 0
+

2
µnuc

(
Ustr

(
A0, D f 0

)
− Ustr(A, x)

))−1/2
dx = t (23)

The term µnuc
2

( .
D f

)2
represents the kinetic part of the energy determined by the change

in the internal structure of connections in the system, while Ustr

(
A, D f

)
is the potential part

of the energy. Both terms form an addition Lstr

(
D f ,

.
D f

)
to the total Lagrangian function

of the dynamic system: Lstr

(
D f ,

.
D f

)
= µnuc

2

( .
D f

)2
− Ustr

(
A, D f

)
. It is evident that the

dependence on the parameter A is non-monotonic, and for each value A, there exists an
optimal fractal dimension D f . The Lagrange function Lstr

(
D f ,

.
D f

)
for equation:

∂Lstr

(
D f ,

.
D f

)
∂D f

− d
dt

∂ Lstr

(
D f ,

.
D f

)
d

.
D f

 = 0 (24)

coincides with the equation obtained from the variation principle of evolution. Note that
the equation for the internal structure has a dynamic character since the magnitude of
the mass force fr was considered given, implying that the characteristic relaxation times
of internal processes in the system are much shorter than the characteristic times of the
external controlling perturbation evolution. Effectively, the internal dynamics of the system
are described by a closed dynamic system. The theory of cluster hierarchical structures is
well developed in general terms, and the laws of transition from one hierarchical structure
level to the next were derived. This theory does not depend on the nature of hierarchical
levels but on the fundamental properties of clusters and can be applied in the present case
if the hierarchy number in cluster structures is identified with the order of acceleration in
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the corresponding tangent bundles of the Cartan space of the system (order of layer contact
with velocity space) up to which the system’s non-equilibrium has “reached”.

Non-equilibrium begins to form in the base space, and the first-order tangent space
(energy space in the isotropic case), and evolution control is exercised in the first-order
acceleration space (i.e., within the framework of collective dynamics, closest to classical
particle dynamics). In this case, minimal information about the system is used, and
averaging is performed over the largest number of dynamic variables (accelerations). From
this coarse level, control begins, and the complete dynamic harmonization functional in
the acceleration space narrows to the dynamic harmonization function in the acceleration
space. At each deeper hierarchical level, each statistical ensemble is divided into many
smaller sub-ensembles, which, in turn, consist of even smaller sub-ensembles of the
next hierarchical level. This hierarchical structure growth picture corresponds to the
development of evolution in two characteristic time systems. First, evolution occurs within
the acceleration space at one hierarchical level to which evolution has progressed (at
the corresponding evolutionary horizon). This evolution is governed by the dynamic
harmonization functional, narrowed to the dynamic harmonization function governing
evolution at this level according to equations derived from minimizing the dynamic
harmonization function over the relaxation time interval at this level until the transition to
the next evolutionary horizon, up to which the wave of evolution spreads further to the next
evolutionary horizon, to the next tangent space, where a non-equilibrium quasi-stationary
state begins to form, whose evolution leads again to the expansion of the evolutionary
horizon and the transition to the next hierarchical level.

4. Application of the Variational Principle of Evolution to Electrophysical Systems

This principle can be applied to derive the equations for electrophysical systems
with changing constraints and coherent acceleration. Extending the laws of evolution from
mechanical to electrophysical systems primarily relies on the analogy between fundamental
mechanical dynamic variables and corresponding electrophysical quantities, as well as the
correspondence between the phase space of a mechanical dynamic system and that of an
electrophysical system.

Electrodynamic processes are typically considered in inertial systems. However,
powerful pulse impacts on a particle system make it essential to study the influence of
coherent motion (i.e., situations where all particles in the system receive the same impulse
increase, exceeding the characteristic thermal impulse) on its properties—mechanical,
statistical, and electrodynamic.

The self-organization of systems occurs due to variations in the structure of connections
between system elements in response to system acceleration and is directed to either the
following:

• To counteract forced acceleration from a stable state by increasing the system’s inertia;
• To aid forced acceleration towards a stable state by decreasing the system’s inertia.

4.1. Regularization of Charge Dynamics in Conductive Media with Fractal Structure and the
Variational Principle: Extended Ohm’s Law

Changes in the system structure lead either to binding the external accelerating mass
force’s free energy within the structure or releasing free energy previously stored in this
structure into the surrounding space.

Let us consider the formulation of the variational principle for the simplest electrical
oscillatory system—a series resonant circuit with capacitance C, inductance L, and potential
difference Up across the capacitor. An important variant of the simplest oscillatory electrical
system is a circuit with non-stationary parameters (capacitances and inductances). The force
arising in such a system under sufficiently slow parameter changes is mainly determined
by the non-stationary potential difference U(t) across the capacitor. In the case of pulse
processes, another component of the forces—electromagnetic shocks on charged particles—
becomes significant.
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It is known that the impulse transfer ∆p = qA directly to charged particles is
determined by the vector potential A acting on the particles. The main sources of the
vector potential are finite segments of pulse current and currents in specific inductance
coils with loops having opposing transverse magnetic field intensities, maximizing the
system’s coherent part acceleration. The “shock,” coherent component of forces is associated
with homogeneous longitudinal electric fields arising during pulse processes or coherent
accelerations. These electric fields are expressed through the time derivative of the effective
vector potential E = − ∂A

∂t and represent mass forces in the current circuit. Below, we
consider the evolution of the oscillatory circuit from the perspective of the system evolution
principle with constraints. Such an analysis of the oscillatory circuit is the first step in
deriving the evolution equations of electrodynamic systems. The simplest oscillatory circuit
consists of capacitance C and inductance L connected in a series or parallel circuit, which
may include current or potential difference sources (see Figure 5).
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The generalized coordinate for the oscillatory circuit is the charge Q on the capacitor
C. The circuit’s inertia concerning charge change is determined by the inductance m ≈ L,
and the generalized force FQ is the total potential difference in the circuit. Potential
differences determine the electric field intensity and forces acting on charged particles.
However, in the case of pulse sources, electric fields appear in the circuit that do not depend
on the potential difference but are determined by the non-stationary vector potential.

In particular, in the oscillatory circuit, the contribution to FQ includes the potential
difference on the capacitor UC and the “electromagnetic shocks” to the system (which can
be formally represented as Ue f f ):

FQ = −UC − Ue f f , −U = −Q
C

, −Ue f f ≈ −de f f

∣∣∣∣→E ∣∣∣∣ = −de f f
∂A
∂t

,
∂A
∂t

≈ 1
τf

A (25)

where de f f is the effective coherence size, τf is the characteristic impact time, i.e., the
duration of the pulse front.

Traditionally, in quasi-stationary electrical engineering, only the first term in FQ is used,
which excites the conduction current in the circuit i = 1

R U, where R is the circuit resistance,
determining energy dissipation. The presence of pulse impacts in the system leads to
the appearance of coherent currents icog ∝ A (and coherent charges Qcog ∝ A), which
can be significant even at small potential differences. The vector potential A = A(i(t)) is
determined by the total current i(t) flowing through the respective circuit.

The dynamics of conduction currents and potential differences in electrical systems
are uniquely determined by Kirchhoff’s equations. However, under pulse impact, the
appearance of an additional quantity—coherent currents—makes Kirchhoff’s equations
incomplete. The relationship between coherent and total currents (or coherent and total
charges) in the system is determined by the order parameter of this electrical system:

η ≈
Qcog

Q + Qcog
≈

icog

i + icog
(26)
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To close Kirchhoff’s equations for systems subjected to electromagnetic shocks, it is
necessary to derive an equation for the order parameter. As with mechanical systems, the
equation for the order parameter (changes in structure and constraints) can be obtained
from the dynamic harmonization principle.

Coherent acceleration makes the system open, and if coherent acceleration significantly
exceeds acceleration in dissipative processes (energy dissipation into heat), the dynamic
harmonization function can be used without considering dissipation (active resistance):

Zdhem =
1
2
(
mwQ − FQ

)2, m = L, FQ = −Q
C

+ Fcog − Upulse(t) (27)

where Fcog(i(t)) = −de f f
d
dt A(i(t)).

Minimizing the function Zdhem in systems without structure and considering connection
equations leads to the equation of an oscillatory circuit without active resistance (dissipation)
but with an external pulse force Upulse(t):

L · wQ +

(
1
C
+

1
Q

(
Fcog(i(t))− Upulse(t)

))
Q = 0 (28)

This equation can be explicitly written, introducing the circuit’s natural frequency:

wQ +

(
ω2

0 +
1

LQ
Fcog

(
d
dt

Q(t)
))

Q = Upulse(t), ω0 =
1√
LC

, wQ =
d2Q(t)

dt2 (29)

The magnitude of the pulse force significantly depends on the impact duration (pulse
front duration), and the change in the system’s natural frequency becomes significant if the
front duration is sufficiently small:

de f f

LQ0τf
A
(

dQ(t)
dt

)
≈ ω2

0 or τf ≈
de f f C
4π2Q0

A
(

d
dt

Q(t)
)

(30)

The emergence of space–time curve κ is also associated with another crucial property
of systems with changing constraints—the lack of locality properties, i.e., the system
dynamics are determined not by the first derivatives at the current point but by values and
higher-order derivatives—accelerations of all orders.

4.2. Regularization in Conductive Media with Fractal Structure and the Variational Principle

Typically, in electrical and electromechanical circuits, current fluctuations are considered
in inertial reference systems, and fluctuations are considered independent and equilibrium.
As per the results of studies (see [40]), the emergence of coherent acceleration in a system
leads to collective interaction even among previously free particles. Such renormalization
of interaction and medium polarization is associated with changes in space–time curve
under the influence of mass forces (coherent accelerations). Thus, it can be argued
that coherent system acceleration leads to the emergence of correlations. In this case,
chaotic oscillations in electrical circuits form states with dynamic chaos, and the system’s
evolution proceeds not along equilibrium states with thermal fluctuations but along
non-equilibrium states corresponding to the system’s arising correlations and deviation
from the locality of the physical properties of the dynamic system (DS), which can be
consistently accounted for based on the generalization of the Tikhonov regularization
method [7–10,40]. Regularization leads to the system’s openness, which is associated with
changing system structure, described by replacing ordinary Riemann derivatives with
fractional or quantum derivatives [41–43].

For ill-posed problems, an exact solution does not exist for every element and does
not possess stability to small changes on the right-hand side. Therefore, regularization
methods must be applied to solve the problem. According to these methods, an approximate
solution of the equation is an element zβ = R̂(β)ũ =

(
Rβ A−1)ũ obtained using the
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regularizing operator R̂(β) with a regularization parameter β aligned with the instability
characteristics. The regularization operator is represented by us in the form of an operator
Rβ, whose action on variables makes sense of averaging, translating the initial values of
the generalized coordinates of the dynamic system into observable and well-predictable
quantities:

zβ = R̂(β)ũ =
(

Rβ A−1
)

ũ = A−1
(

Rβũ
)
= A−1⟨ũ⟩, ⟨ũ⟩ = Rβũ (31)

Let Qi(t) be the coordinates of an electrophysical dynamic system (for example,
non- stationary charges in an electric circuit), describing its evolution in states with
correlations. Direct differentiation of charges ii(t) = d

dt Qi(t) to obtain currents in the
case of complex system dynamics is an ill-posed problem, and to determine the currents
in the system, it is necessary to apply the regularization method (use of the averaging
operator):

ireg = ⟨ii⟩ =
(

Rβ(η) d
dt

)
Qi(t) = Dβ(η)

t Qi(t), 0 < β ≤ 1 (32)

In this case, generalized differentiation operators with order β(η) are used, the
form of which depends on the internal complexity of the system dynamics and on the
order parameter. The total observed charge Qreg and current obtained ireg as a result of
regularization are, respectively, the sums of the initial charges and currents and additional
additives in the form of coherent charge and current:

Qreg = Q + Qcog, ireg = i + icog (33)

This approach allows for obtaining an approximation for solving the dynamic equation
that is stable and unique, and the most appropriate choice of regularization operators (and,
consequently, generalized differentiation operators) depends on the physical processes and
dynamic properties of the system. In [8,44–46], it is shown that fractional derivatives and
Jackson derivatives can be used as regularizing operators and generalized derivatives, and
the equation for observable regularized quantities (e.g., observable charges) in an open
system with a non-zero order parameter has the form

D2−α
t Q(t) + ω2

0Q(t) = 0 (34)

When solving the Cauchy problem for such equations, Mittag-Leffler functions naturally

arise, Eα,β(x) =
∞
∑

k=o

xk

Γ(αk + β)
, Eν,1(x) ≡ Eν(x), and the equation’s solution for the

regularized charge with initial conditions is explicitly expressed through these functions
Eα,β(x):

Q(t) = i0tE2−α,2

(
−ω2

0t2−α
)
+ Q0E2−α,1−α

(
−ω2

0t2−α
)

(35)

The solution’s nature depends on the sign of the addition α to the derivative’s
index. For α > 0, states correspond to an open system with energy loss, while α < 0
corresponds to states where the system’s openness manifests as energy inflow. These
solutions, depending on t, behave similarly to harmonic oscillations with dissipation for

δ(α) =

{
−0.00198 + 0.618α + 0.304α2, α < 0
0.000138 + 0.60α − 0.06α2, α > 0

(36)

Non-equilibrium states are determined by coherent accelerations or fluxes, which,
through the effective parameter q, are linked to the order parameter and characterize system
openness, state localization, and delocalization. In the absence of coherent acceleration and
fluxes of the main macroscopic system characteristics (e.g., entropy flux), a homogeneous
equilibrium state is realized, and the parameter q = 1. In this case, the distribution
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function f(v) by velocities (or energies) transitions into the Maxwell distribution function. In
particular, Rη = 0, and q = 1, η = 0.

The sign of resistance Rη depends on whether q < 1 or q > 1. As coherent acceleration
and fluxes in the system increase (q ̸= 1), the energy and coordinate distributions shift
from exponential dependence to quasi-power. The relationship between parameters q, η
and coherent accelerations acog is studied in [8–10]:

q(η) =


q− = 1 − η; q− ≤ 1, acog = a− < 0, q− =

√
1 − γa

|a−|
|adis|

q+ =
1

1 − η
; q+ > 1, acog = a+ > 0, q+ =

√
1 + γa

a+
|adis|

(37)

where |adis| is the acceleration due to dissipation, a characteristic acceleration of dissipative
processes, which can be estimated through the thermal speed or Fermi energy (at such
substance densities where quantum statistics are significant) adis ≈ V2

T /l0, l0, a characteristic
equilibrium scale of the object. The maximum accelerations amax and maximum possible
entropy fluxes are achieved at minimal scales. The existence of two fundamentally different
types of dependence of the non-equilibrium state on the order parameter is a characteristic
property accompanying the appearance of system anisotropy due to coherent acceleration.
In one of the orthogonal directions, the characteristic spatial scales increase (the direction
associated with the positive value of acceleration q+), while in others (for three-dimensional
space, the remaining dimensions constitute a certain surface), spatial scales decrease. Here,
it is evident that accelerations in these directions are related by the ratio |a−| = a+

1+γa
a+
adis

. And

when the positive acceleration changes within 0 < a+ < ∞, then the corresponding
acceleration in the orthogonal direction changes within 0 < a− < |adis |

γa
.

When using relation (1) to estimate the dependence of space–time curve on the order
parameter,

κ(η) ≈ 2
a2

cog

c4 ε2 ≈ 2

(
a2

cog

a2
dis

)(
u2

T
lst

)2
ε2

c4 ≈
(

q(η)2 − 1
γa

)2
1
l2
st

β4
Tε2 (38)

where lst is the mean free path of particles in the system. For small order parameters,
space–time curve can be approximately estimated by the relation κ(η) ≈ 4 1

l2
st

β4
Tε2η2, or by

introducing the curvature radius Rκ(η):

Rκ(η)

lst
≈ γa

β2
Tε

1∣∣∣q(η)2 − 1
∣∣∣ ≈ γa

β2
Tε

1
η

(39)

By substituting the obtained curve relations into the expression for capacitance
(7 and 8), we obtain the dependence of capacitance on the order parameter:

γc =
1√
2

de f f

lst
β2

Tε, γL ≈
√

2β2
Tε

ρ

lst
, Nm =

Acl
Amono

, gQ(η) ≈
(
1 + γηη

)
(Nm)

1+η
3+η −

2
3

C(η)
C0

≈ gQ(η),
L(η)
L0 · l

≈ I0(γLη)K0(γLη) (40)

As demonstrated later, the presented parameter dependencies of the circuit on the order
parameter ensure the system’s nonlinearity, openness, and the possibility of controlling the
direction of energy exchange with the external environment.

Quasi-stationary states of non-equilibrium systems and particle distributions in them
are determined by the corresponding non-equilibrium parameter q and expressed through q,

generalizations of the exponential function expq(x) = (1 + (1 − q)x)
1

(1−q) . Non-equilibrium,
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non-ideal states of the system should naturally manifest in oscillator processes. To describe
the oscillatory properties of non-equilibrium systems, we introduce generalized trigonometric
functions:

qCos(z) =
expq(i z) + expq(−i z)

2
, qSin(z) =

expq(i z)− expq(−i z)

2i
(41)

These functions transition into ordinary trigonometric functions for q → 1, and with
increasing deviation of the non-equilibrium parameter q from unity, the deviation of the
behavior of these functions from the usual ones is enhanced. When q > 1, oscillations decay,
and when q < 1, oscillations amplify.

As mentioned above, the oscillations of open systems can approximately be described
by Equation (34) with solutions (35) with damping or instability. By conducting, as above,
the optimization of the difference between the corresponding phase trajectories using the
least squares method, we obtain the dependence of the non-equilibrium parameter q on the
addition to the derivative index α:

q = 4.55 − 5.19 α + 1.64 α2 (42)

It can be said that non-equilibrium stationary states of an open system with some
order parameters are free movements in the system’s eigenfunction space, determined
using regularization operators. The sign of coherent acceleration determines the nature of
the system’s openness, i.e., either instability and energy growth in the system are observed,
or energy losses are observed in the system.

The physical consequence of the openness of the electrophysical system, where
currents subjected to coherent acceleration flow through the system’s electrical circuits, is
the emergence of coherent currents in its circuits that are not directly related to the potential
difference Upulse(t) and do not participate in the dissipative chaos processes of the system.

4.3. Connections in Non-Inertial Electromechanical Systems and Equations for Structure Evolution

By applying the regularization procedure to the equation for a series oscillatory circuit,
which corresponds to the condition of the minimum dynamic harmonization function,
Zdhem = 1

2
(
mwQ − FQ

)2, we obtain the following equation:

D2−α(η)
t Qreg(t) +

(
ω2

0 +
1

LQreg
Fcog

(
ireg(t)

))
Qreg = 0, ω0 =

1√
LC

, α →
η→0

1 (43)

Considering the approximate equivalence of the open system’s oscillatory process in
generalized derivatives and the linear process with dissipation or instabilities, equation
can be written as follows:

d2Qreg

dt2 + 2δ(η)
dQreg

dt
+

(
ω2

0 +
1

LQreg
Fcog

(
dQreg

dt

))
Qreg = 0 (44)

It is evident that the system’s openness degree, proportional to δ(η), also approaches
zero as the order parameter approaches zero δ(η) →

η→0
0. It is convenient to present the

equivalent dissipation in the usual form for linear circuits, introducing effective resistance
δ(η) = − Rη

L , considering coherent processes and interaction with a non-equilibrium
physical vacuum.

We write the term Rη in the circuit equation with a negative sign, where instability
with a positive increment arises when Rη > 0. The damping decrement in the system
due to the order parameter η change corresponds to the case Rη < 0. In obtaining
Equation (43), dissipative processes associated with the circuit’s active resistance 2 R

L
dQ
dt
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were not considered. In the derived form, it is easy to account for the omitted dissipative
terms and obtain a complete equation considering both coherent and dissipative processes:

d2Qreg

dt2 + 2
R
L

dQ
dt

−
(

2
Rη

L
dQreg

dt

)
+

(
ω2

0(η) +
1

LQreg
Fcog

(
dQreg

dt

))
Qreg = 0 (45)

Qreg = Q + Qcog, ω2
0(η) = ω2

00
1

gQ(η)
, ω2

00 = 1/(LC0) (46)

It might seem that Equation (43) for describing the oscillatory system obtained from the
dynamic harmonization function minimum is complete. However, considering the existence
of constraint equations that, in the simplest case for the oscillatory circuit, determine
the charge dependence on the capacitor’s internal structure and, therefore, on the order
parameter, it must be considered that Q = Q0gQ(η). In this case, wQ = D2−α(η)

t Q(t), the
charge magnitude acceleration in the dynamic harmonization function (27) is not arbitrary
but determined by the regularized order parameter acceleration wη :

wη = D2−α(η)
t η(t), wQ = Q0gηwη , gη =

∂2gQ(η)

∂2η
(47)

By substituting the obtained expression for acceleration into Zdhem, we obtain the
dynamic harmonization function depending on the order parameter accelerations:

Zdhem
(
wη

)
=

1
2

(
Q0gη(η)wη +

(
ω2

0(η) +
1

LQreg
Fcog

(
dQreg

dt

))
Qreg

)2

(48)

The condition of the dynamic harmonization function minimum relative to the order

parameter accelerations
∂Zdhem(wη)

∂wη
= 0 leads to the differential equation in regularized

derivatives, determining the evolution of the dynamic system’s structure and connections
under the influence of mass force:

mstrQ0wη +

(
ω2

0(η) +
1

LQreg
Fcog(A(t))

)
Qreg(η, t) = 0, mstr(η) = gη(η) (49)

Structural inertia (mass) manifests in phenomena accompanied by symmetry breaking,
similar to how spontaneous symmetry breaking in gauge theories can lead to the emergence
of finite mass in massless gauge particles.

After the external entropy force ceases to disrupt the system’s symmetry, a long-range
order characterized by the parameter η may arise. Structural inertia, characterized by
order parameters at each hierarchical level, is responsible for the inertia of self-organization
processes. In general, structural inertia mstr, associated with the emergence of new structures
in the dynamic system, is expressed through the order parameter.

4.4. Extended Kirchhoff Equations for Electrical Circuits with Changing Connections and Their
Main Properties

We write the extended system of Kirchhoff equations for the circuit, considering
coherent processes and interaction with the physical vacuum. Considering that the initial
conduction current i = dQ

dt is related to the total regularized current ireg =
dQreg

dt through
the order parameter i = (1 − η)ireg, we write the oscillation equation for the observable
charge in the circuit

d2Qreg

dt2 + 2
(1 − η)R − Rη

L
dQreg

dt
+

(
ω2

0 +
1

LQreg
Fcog

(
dQreg

dt

))
Qreg = 0 (50)
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The equation for the order parameter, closing the oscillatory circuit equations, takes
the form

wη +

ω2
00

gQ(η)
+

1
LQreg

Fcog

(
d
dt

Qreg

)
gη(η)

gQ(η) = 0, wη = D2−α(η)
t η(t) (51)

or, approximately (see (26)), in ordinary derivatives,

d2η

dt2 + 2δ(η)
dη

dt
+

ω2
00

gQ(η)
+

1
LQreg

Fcog

(
d
dt

Qreg

)
gη(η)

gQ(η) = 0 (52)

For approximate evaluations of the self-consistent vector potential arising when
current ireg flows through the coils with points of singularities in the current Nt (the
number of regions where currents of opposite directions meet), we can use the relations:

Fcog(i(t)) = −de f f
d
dt

A(i(t)), A
(
ireg
)
=

µ0

4π
Ntireg (53)

and write the complete system of oscillatory circuit equations as follows:(
d2Qreg

ω2
00dt2

)
+ 2

(1 − η)R − Rη

ω00L

(
dQreg

ω00dt

)
+

(
1

gQ(η)
+ γ

1
Qreg

(
d2Qreg

ω2
00dt2

))
Qreg = 0 (54)

d2η

ω2
00dt2

+ 2
δ(η)

ω00

dη

ω00dt
+

(
1

gη(η)η
+ γ

(
1

Qreg

d2Qreg

ω2
00dt2

)
gQ(η)

gη(η)η

)
η = 0,

γ =
de f f

L
µ0

4π
Nt

(55)

These equations describe the main physical processes in the system: the appearance of
coherent currents leading to effective negative resistance and the system’s own frequency
renormalization.

From Equation (54), it is evident that in the zero-order parameter η → 0 and at
large pulse impact front durations τf → ∞, the system’s own frequency renormalization
disappears, the equation for the order parameter degenerates into the relation η = 0, and
the equations transition into a single equation:

d2Qreg

dt2 + 2
R
L

dQreg

dt
+ ω2

0Qreg = 0 (56)

that is, the usual equation of an oscillatory circuit with a constant frequency. By collecting
the terms with charge acceleration in (54), we obtain an explicit renormalization of the
system’s inertia:

(1 + γ)
d2Qreg

dt2 + 2
(1 − η)R − Rη

L
dQreg

dt
+

ω2
00

gQ(η)
Qreg = 0 (57)

Introducing dimensionless variables, y = Qreg/Q0, τ = ω00t, ω00 =
2π

T0
, r = R/ω00L,

rη = Rη/ω00L, we write down the system of Equations (56) and (57) takes the form

(1 + γ)
d2y
dτ2 + 2

(
(1 − η)r − rη(η)

) dy
dτ

+
1

gQ(η)
y = 0 (58)
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d2η

dτ2 + Ustr(η, y)η = 0, Ustr(η, y) =
(

1 + γ
gQ(η)

y
d2y
dτ2

)
1

ηgη(η)
(59)

For the practical use of these equations and process optimization, it is important that
the potential function in the equation for the order parameter has two types of behavior
depending on the system parameters (see Figure 6).
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For small values of the impact parameters, the structural potential has a well located
near the zero value of the order parameter ηmin ≈ 0.

With an increase in parameters (an increase in the field amplitude and permittivity
and a decrease in the dissipation level), the position of the potential well shifts to the region
of higher-order parameters ηmin → 0.5, and when the critical value of the parameters is
exceeded, there is no potential well, and the state rolls toward complete coherence η → 1,
in which all currents in the system are coherent.

5. Conclusions

This study is devoted to the expansion of variational principles from the description
of the dynamics of complex systems to the description of their evolution. This study
demonstrates that the main parameters that distinguish the dynamics of fractal systems
from their evolution are the time-varying coherent acceleration of the system and the
presence of energy flows with a certain direction in the phase space determined by the
coherent acceleration (i.e., evolution contains dynamic processes with escalation).

Coherent acceleration occurs in all systems under short-term impulse effects, and
the evolution is determined by the corresponding variational principle of evolution—the
dynamic principle of self-harmonization.

The variational principle of evolution is obtained by expanding the Gauss–Hertz
variational principle by applying the basic concepts of Vlasov on the embedding of
evolution in Cartan space with an infinite number of tangent planes and various orders
of tangency up to infinite orders. The variational principle allows one to derive not only
the equations of the dynamics of fractal systems but also the equations of the evolution of
their internal structure (fractal dimension and order parameter). The variational evolution
principle and the corresponding equations following it can be applied to systems of various
physical natures and, in particular, to electrophysical systems. Pulse effects on complex
systems lead to changes in connections, inertia, and coherence and cause the evolution
of fractal elements in electrophysical circuits. The application of the extended variational
principle to fractal electrophysical systems allows one to obtain both generalized Kirchhoff
equations and equations for the fractal dimension of connections in electrophysical circuits.
The obtained evolution equations can be especially important in the development and
modeling of complex pulsed electrophysical devices, taking into account nonlinear elements
of the circuit and energy flows of different directions in the phase space of these devices.
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